2023

PHYSICS — GENERAL

Paper: DSE-B-1

[Digital Electronics]

Full Marks: 50

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

> নং প্রশ্ন এবং বাকি প্রশ্নগুলি থেকে যে-কোনো চারটি প্রশ্নের উত্তর দাও।

১। *যে-কোনো পাঁচটি* প্রশ্নের উত্তর দাও ঃ

SXC

- (ক) প্রদত্ত দ্বিক সংখ্যাটিকে দশমিক সংখ্যায় লেখো ঃ (110011.11)₂।
- (খ) (257.5)₁₀-কে অন্তমিক সংখ্যায় প্রকাশ করো।
- (গ) $(10011.11)_2$ থেকে $(1111.001)_2$ -কে বিয়োগ করো এবং বিয়োগফলকে দশমিক সংখ্যায় প্রকাশ করো।
- (ঘ) সরল করো ঃ $\overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$
- (%) ডি মরগ্যানের উপপাদ্যগুলি লেখো।
- (চ) এনকোডার বলতে কী বোঝো লেখো।
- (ছ) NAND গেট ব্যবহার করে XOR গেটের বর্তনী অঙ্কন করো।
- ২। (ক) 'সমতা আবিষ্কারক' বা 'ইকুয়ালিটি ডিটেকটর' কাকে বলে লেখো।
 - (খ) দুই ইনপুটের সমতা আবিষ্কারকের বর্তনী অঙ্কন করো এবং সত্যসারণি লেখো।
 - (গ) অর্ধযোজকের সত্যসারণি লেখো এবং NAND গেট ব্যবহার করে বর্তনী অন্ধন করো।
 - (घ) যে-কোনো একটি 'সার্বজনীন গেট' ব্যবহার করে বেসিক গেট গঠন করো।

3+(2+5)+(5+2)+0

- ত। (ক) $f(x,y,z) = \sum_{x} (0,1,3,4,6)$ -কে K-Map দ্বারা প্রকাশ করে। এবং সরল করো।
 - (খ) পূর্ণযোজকের সত্যসারণি লেখো। আউটপুটের বুলিয়ান রাশি লেখো এবং সরলীকরণ করো। পূর্ণযোজকের বর্তনী অঙ্কন করো।
 - (গ) প্রমাণ করো ঃ $\overline{AB} + \overline{A} + AB = 0$ ।

(2+5)+(5+2+2)+2

- ৪। (ক) BCD সিস্টেম কী লেখো।
 - (খ) 'বিচ্ছিন্ন উপাদান বর্তনী'-র (discrete component circuit) তুলনায় 'সমন্বিত বর্তনী'র (integrated circuit) উপকারিতা ও অপকারিতা ব্যাখ্যা করো।
 - (গ) মাল্টিপ্লেক্সার কী ? একটি 4 : 1 মাল্টিপ্লেক্সারের বুলীয় সমীকরণ, সত্যসারণি লেখো এবং বর্তনীর চিত্র অঙ্কন করো। ১+(২+২)+(১+২+১+১)
- ৫। (क) 'ল্যাচ' এবং 'ফ্লিপফ্লপ'-এর পার্থক্য কী লেখো।
 - (খ) 'ক্লকড S-R' ফ্লিপফ্লপের বর্তনী অঙ্কন করো এবং এর কার্যপ্রণালী সত্যসারণির সাহায্যে ব্যাখ্যা করো।
 - (গ) অনুক্রমিক বর্তনীতে 'প্রিসেট' ও 'ক্লিয়ার'-এর গুরুত্ব ব্যাখ্যা করো।
 - (ঘ) 'race around condition' কী ব্যাখ্যা করো।

2+8+2+2

- ৬। (ক) 'রেজিস্টার' কী?
 - (খ) D-ফ্লিপফ্লপ ব্যবহার করে 'SISO' শিফ্ট রেজিস্টারের বর্তনী অঙ্কন করো এবং কার্যপ্রণালী ব্যাখ্যা করো।
 - (গ) '4 bit PIPO' শিফ্ট রেজিস্টারে ইনপুট থেকে আউটপুট পেতে কতগুলো ক্লক পাল্স ব্যবহার করা হয়?
 - (ঘ) 'ট্রিগার' বলতে কী বোঝো এবং এটি কয় প্রকার হয়?

2+(2+0)+3+(3+3)

- ৭। (ক) ডিজিট্যাল সিস্টেমে 'কাউন্টার' কী?
 - (খ) 'synchronous' ও 'asynchronous' কাউন্টারের পার্থক্য কী লেখো।
 - (গ) কাউন্টারের ব্যবহার কোথায় হয় লেখো।
 - (ঘ) ডিকেড কাউন্টার-এর বর্তনী আঁকো ও ক্লকের সাথে বিভিন্ন আউটপুট-এর 'timing diagram' অঙ্কন করো।

2+2+2+(2+2)

[English Version]

The figures in the margin indicate full marks.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:

2×5

- (a) Convert the given binary number into equivalent decimal number: (110011.11)2.
- (b) Convert the decimal number (257.5)₁₀ into octal equivalent.
- (c) Subtract (1111.001)₂ from (10011.11)₂ and write its decimal equivalent.
- (d) Simplify the expression : $\overline{ABC} + A\overline{BC} + AB\overline{C} + AB\overline{C}$.
- (e) Write De Morgan's theorems.
- (f) What is an encoder?
- (g) Draw the circuit diagram of XOR gate using NAND gate.

- 2. (a) What is an equality detector?
 - (b) Draw the circuit diagram of a two input equality detector and write its truth table.
 - (c) Write down the truth table of an half adder and draw the circuit diagram using NAND gates.
 - (d) Using any one type of the universal gates construct the basic gates. 1+(2+1)+(1+2)+3
- 3. (a) Express the function $f(x, y, z) = \sum_{x \in \mathbb{Z}} (0,1,3,4,6)$ as Karnaugh map and simplify it.
 - (b) Write the truth table of full adder. Write the Boolean expressions of the outputs and simplify them. Draw the circuit diagram from the simplified expressions.
 - (c) Prove that: $\overline{AB} + \overline{A} + AB = 0$.

(2+1)+(1+2+2)+2

- 4. (a) What do you mean by BCD system?
 - (b) Write the advantages and disadvantages of integrated circuit (IC) over discrete component circuit.
 - (c) What is a multiplexer? Draw a 4:1 multiplexer circuit, write the Boolean equation and truth table. 1+(2+2)+(1+2+1+1)
- 5. (a) What is the difference between 'latch' and 'flip-flop'?
 - (b) Draw the circuit diagram of a clocked S-R flip-flop and explain its working principle with the truth table.
 - (c) Explain the importance of 'preset' and 'clear' in sequential circuit.
 - (d) Explain 'race around condition'.

2+4+2+2

- 6. (a) What is a Register?
 - (b) Draw the diagram of a 4-bit serial in serial out (SISO) shift register using D flip-flop and explain its working principle.
 - (c) How many clock pulses are required to get the data at the output of a 4-bit PIPO shift register?
 - (d) What is trigger? Mention the types of triggers.

2+(2+3)+1+(1+1)

- 7. (a) Define 'counter' in digital system.
 - (b) Write the difference between synchronous and asynchronous counter.
 - (c) Write the applications of counter.
 - (d) Draw the circuit diagram of Decade counter. Draw the corresponding timing diagram of clock and outputs.
 2+2+2+(2+2)

Paper: DSE-B-2

[Nuclear and Particle Physics]

Full Marks: 65

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

বিভাগ - ক

21	যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও ঃ	2)
	(ক) প্রতিফলিত নিউক্লিয়াস বলতে কী বোঝো? একটি উদাহরণ দাও।	
	(খ) নিউক্লিয়াসের ভর ত্রুটির সংজ্ঞা দাও।	
	(গ) বিটা-কণার শক্তি বর্ণালীর লেখটি এঁকে দেখাও।	
	(ঘ) 80 ¹⁶ (1H ² , 1H ³)X—বিক্রিয়ায় অজানা কণা 'X' টি কী?	
	(ছ) সমস্ত লেপ্টন ও অ্যান্টিলেপ্টনের নাম ও চিহ্ন লেখো।	
	(চ) নিউক্লীয় কণাগুলির আইসোম্পিন সংখ্যা কত?	
	(ছ) Ξ কণার আইসোম্পিন ও স্ট্রেঞ্জনেস-এর মান কত?	
	বিভাগ - খ	
	<i>যে-কোনো তিনটি</i> প্রশ্নের উত্তর দাও।	
२।	(ক) ভরসংখ্যার সঙ্গে কণা প্রতি নিউক্লীয় বন্ধন শক্তির লেখটি এঁকে দেখাও।	
	(খ) খুব কম ও খুব বেশি ভরসংখ্যার নিউক্লিয়াসের ক্ষেত্রে বন্ধন শক্তি কম হওয়ার কারণ যুক্তিসহ ব্যাখ্যা করো।	2+0
91	একটি অর্ধ-পরিবাহী গণক যন্ত্রের গঠন ও কার্যপ্রণালী চিত্রসহ বর্ণনা করো। এই গণকের সীমাবদ্ধতা কী?	8+3
81	(ক) নিউক্লিয়াসের গঠন বর্ণনায় 'কণা ত্বরণ' যন্ত্রের প্রয়োজনীয়তা কী?	
	(খ) সিংক্রোট্রন ও সিংক্রো-সাইক্লোট্রন বলতে কী বোঝো?	2+0
æI	(ক) তাপোৎপাদক ও তাপশোষক নিউক্লীয় বিক্রিয়া বলতে কী বোঝো?	
	 একটি ডয়টেরনকে প্রোটন ও নিউট্রনে বিচ্ছিন্ন করতে γ-রিশার ন্যূনতম কত শক্তির প্রয়োজন তা নির্ণয় করো। 	
	যেখানে— প্রোটনের ভর = 1.00759 u	
	নিউট্রনের ভর = 1.00898 u	
	্যানের জর = 2.01471μ	5+0

৬। নিম্নলিখিত বিক্রিয়াগুলি অনুমোদিত নয় কেন তা যুক্তি সহকারে লেখো।

- $(\overline{\Phi}) p + \pi^{\circ} \rightarrow \overline{p} + \pi^{+} + \pi^{-}$
- (\forall) $n \rightarrow p + e^-$

 $(\eta) e^- \rightarrow \overline{\nu}_e + \gamma$

2+2+5

বিভাগ - গ

যে-কোনো চারটি প্রশ্নের উত্তর দাও।

৭। (ক) নিউক্লীয় বলের বৈশিষ্ট্যগুলি লেখো।

- (খ) N-Z লেখটি এঁকে দেখাও, যেখানে N-নিউট্রন সংখ্যা ও Z হল পারমাণবিক সংখ্যা। লেখটির বৈশিষ্ট্য সংক্ষেপে আলোচনা করো।
- (গ) হাইড্রোজেন পরমাণুর ভর ও নিউট্রনের ভর যথাক্রমে $1.008142\ u$ ও $1.008982\ u$ হলে $_8{\rm O}^{16}$ নিউক্লিয়াসের বন্ধনশক্তি ও প্যাকিং ভগ্নাংশ নির্ণয় করো। $_8{\rm O}^{16}$ নিউক্লিয়াসের ভর = $15.994915\ u$.
- ৮। (ক) α-কণার 'সীমা' (Range) বলতে কী বোঝো? এই সীমা কোন কোন বিষয়ের ওপর নির্ভর করে?
 - (খ) তেজস্ক্রিয় α-বিঘটনের গাইগার-নাটাল সূত্রটি লেখো।
 - (গ) কোনো পদার্থের মধ্য দিয়ে γ-রশ্মি প্রবাহিত হলে কী কী ঘটনা ঘটে তার সংক্ষিপ্ত আলোচনা করো। (২+২)+২+8
- ১। (ক) সমস্ত নিউক্লীয় ম্যাজিক সংখ্যাগুলি লেখো। এদেরকে "ম্যাজিক" সংখ্যা বলা হয় কেন?
 - (খ) দুটি নিউক্লিয়াসের নাম লেখো যাদের নিউট্রন ও প্রোটন দুটো সংখ্যাই ম্যাজিক সংখ্যা।
 - (গ) উদাহরণ সহযোগে বোরের যৌগিক নিউক্লীয় বিক্রিয়ার প্রকল্পটি ব্যাখ্যা করো।

(2+2)+2+8

- ১০। (ক) সাইক্রোট্রন কী? একটি সাইক্রোট্রনের সর্বোচ্চ ব্যাসার্ধ 0.5 m এবং এটিতে 1.5 T চৌম্বক ক্ষেত্র প্রয়োগ করা হয়েছে,
 - (অ) এটির প্রযুক্ত বিভবের কম্পাঙ্ক নির্ণয় করো,
 - (আ) এটি প্রোটনকে ত্বরান্বিত করলে সর্বোচ্চ গতিশক্তি কত?
 - (খ) LINAC যন্ত্রটির অসুবিধাগুলি কী কী?
 - (গ) ভারতের কোথায় কোথায় কণা ত্বরক যন্ত্র আছে?

(2+8)+2+2

- ১১। (ক) একটি আলোকবর্ধক নলের (PMT) কার্যপ্রণালী বর্ণনা করো।
 - (খ) একটি GM গণকের নিষ্প্রাণ সময় 200 µs। প্রতি মিনিটে 1000 গণনাকালীন অবস্থায় গণকের প্রকৃত গণনার হার কত?
 - (গ) কণা-বিদ্যার চারটি মৌলিক প্রতিক্রিয়ার নাম লেখো।
 - (ঘ) তড়িৎচুম্বকীয় আন্তঃক্রিয়ার বিনিময় কণার নাম কী?

0+0+2+2

Please Turn Over

(6)

১২। (क) নীচের কোন বিক্রিয়ায় ব্যরিয়ন সংখ্যা সংরক্ষিত?

$$\bullet p + p \longrightarrow p + e^+$$

•
$$p+n \longrightarrow 2e^+ + e^-$$

•
$$p \longrightarrow n + e^- + \overline{v}_e$$

•
$$p + \overline{p} \longrightarrow 2\gamma$$

ব্যরিয়ন সংখ্যা কী সব কয়টি মৌলিক আন্তঃক্রিয়ায় সংরক্ষিত?

(খ) নীচের কোন বিক্রিয়ায় স্টেঞ্জনেস সংরক্ষিত ?

•
$$K^+ \longrightarrow \mu^+ + \nu_{\mu}$$

•
$$n + K^+ \longrightarrow p + \pi^{\circ}$$

•
$$K^+ + K^- \longrightarrow \pi^0 + \pi^0$$

•
$$p + K^- \longrightarrow \Lambda^o + \pi^o$$

স্ট্রেঞ্জনেস কি চারটি মৌলিক আন্তঃক্রিয়ায় সংরক্ষিত?

(8+3)+(8+3)

2×5

[English Version]

The figures in the margin indicate full marks.

Group - A

- 1. Answer any five questions:
 - (a) What do you mean by mirror nuclei? Give one example.
 - (b) Define mass defect of a nucleus.
 - (c) Draw the energy spectrum of β-particles.
 - (d) Determine the unknown particle 'X' in reaction ${}_{8}O^{16}({}_{1}H^{2}, {}_{1}H^{3})X$.
 - (e) Write down the name and symbols of all leptons and anti-leptons.
 - (f) What is the value of isospin number of nucleons?
 - (g) What is the isospin and strangeness of Ξ particle?

Group - B

Answer any three questions.

- 2. (a) Draw the binding energy per nucleon versus the mass number curve.
 - (b) Explain why the binding energy decreases for lower mass number and much higher mass number of nuclei.

- 3. With proper schematic diagram, describe the construction and working of a semiconductor detector.

 What is its limitations?
- 4. (a) Why are the particle accelerators necessary in the studies of nucleus?
 - (b) What do you mean by synchrotron and synchrocyclotron?

2+3

- 5. (a) What do you mean by exothermic and endothermic nuclear reaction?
 - (b) Calculate the minimum energy of γ-rays necessary to disintegrate a deuteron into a proton and a neutron.

Given: mass of proton = 1.00759 umass of neutron = 1.00898 u

mass of deuteron = 2.01471 u

2+3

- 6. Explain why the following processes are not allowed:
 - (a) $p + \pi^{\circ} \rightarrow \overline{p} + \pi^{+} + \pi^{-}$
 - (b) $n \rightarrow p + e^-$

(c) $e^- \rightarrow \bar{v}_e + \gamma$.

2+2+1

Group - C

Answer any four questions.

- 7. (a) Write down the characteristics of nuclear force.
 - (b) Sketch the N-Z plot, where N is the neutron number and Z is the atomic number. Briefly explain the nature of the plot.
 - (c) The masses of the hydrogen atom and the neutron are 1.008142 u and 1.008982 u respectively. Calculate the binding energy and packing fraction of ${}_{8}O^{16}$ nucleus, where mass of ${}_{8}O^{16}$ nucleus = 15.994915 u.
- 8. (a) What do you mean by 'range' of α -particles? On which factors this range depend?
 - (b) Write down the Geiger-Nuttal law for α-decay by radioactive nuclei.
 - (c) Describe qualitatively all the processes occurs when γ-rays passes through the matter.

(2+2)+2+4

- 9. (a) Write down all the magic numbers of nuclei. Why are these numbers called magic numbers?
 - (b) Name two nuclei in which neutron and proton numbers are magic numbers.
 - (c) Explain Bohr's compound nuclear hypothesis with example.

(2+2)+2+4

- 10. (a) What is cyclotron? A cyclotron has maximum radius of 0.5 m and it operates in a magnetic field of 1.5 T. Find (i) the frequency of applied voltage, (ii) maximum kinetic energy if it is used to accelerate protons.
 - (b) What are the disadvantages of LINAC?
 - (c) Where in India the accelerator facilities are available?

(2+4)+2+2

- 11. (a) Explain the working principle of Photo Multiplier Tube (PMT).
 - (b) A G.M. Counter has a dead time of 200 μs. What is the true counting rate when observed counting rate is 1000 per minute?
 - (c) Name all four fundamental interactions in particle physics.
 - (d) What is the exchange particle of electro-magnetic interaction?

3+3+2+2

12. (a) In which of the following reactions, baryon number is conserved?

$$\bullet p + p \longrightarrow p + e^+$$

•
$$p \longrightarrow n + e^- + \overline{\nu}_e$$

•
$$p + \overline{p} \longrightarrow 2\gamma$$

Is baryon number conserved in all four types of fundamental interactions?

(b) In which of the following reactions or decays, strangeness is conserved?

•
$$K^+ \longrightarrow \mu^+ + \nu_{\mu}$$

•
$$n + K^+ \longrightarrow p + \pi^{\circ}$$

•
$$K^+ + K^- \longrightarrow \pi^o + \pi^o$$

•
$$p + K^- \longrightarrow \Lambda^o + \pi^o$$

Is strangeness conserved in all four types of fundamental interactions?

(4+1)+(4+1)