2022

MATHEMATICS — HONOURS

Paper: CC-2 Full Marks: 65

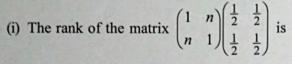
The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

		as jar as praetica	vie.					
oughout	the question the symb	pols N, \mathbb{Z} denote respective. The other symbols have the	ely the set of natural nu eir usual meanings.	umbers, set of integers.				
	se the correct alternati	ive with proper justification	n, 1 mark for correct	answer and 1 mark fo 2×10				
(a) 1	Number of equivalence	relations on the set {1, 2,	3} is					
	(i) 2	(ii) 3	(iii) 4	(iv) 5.				
(b) I	Let $f: \mathbb{Z} \to \mathbb{Z}^+$, \mathbb{Z}^+ is t	the set of non-negative integ	gers, is defined by $f(x)$	$x = \frac{1}{2} (x + x), \text{ then}$				
	(i) f is injective but i	not surjective						
	(ii) f is not injective but surjective							
	(iii) f is injective and	surjective						
	(iv) f is neither injective nor surjective.							
(c) T	The remainder when 6.	$7^{32} + 7.9^{45}$ is divided by 4	is					
	(i) 1	(ii) 2	(iii) 3	(iv) 4.				
(d) T	The principal value of ($(-1)^i$ is						
	(i) <i>e</i> ^π	(ii) e ^{-π}	(iii) $e^{\pi/2}$	(iv) $e^{-\pi/2}$.				
(e) If $gcd(a, b) = p$, a prime number, then $gcd(a^{2023}, b)$ is								
	(i) p	(ii) p^{2023}	(iii) 2023p	(iv) p^2 .				
(f) It	f the roots of the equat	tion $x^3 - 7x^2 + ax + 2023 =$	= 0 are integers, then t	the value of a is				
	(i) 1	(ii) 289	(iii) - 289	(iv) 119.				
	or positive real number $a + b + c = 2023$ is	ers a , b and c , the least value	ne of $a^{-1} + b^{-1} + c^{-1}$ so	ubject to the condition				
	(i) $\frac{1}{2023}$	(ii) $\frac{9}{2023}$	(iii) $\frac{3}{2023}$	(iv) $\frac{2023}{9}$.				
	2023	2023	2023	9				
				Please Turn Ove				

X(1	st Sm.)-Mathematics-H/CC-2/CB	(2)		
	(h) The points $z = x + iy$	on the Argand plane, satis	fying $e^{iz} = -1$ lie	
	(i) in an ellipse	(ii) in a straight line	(iii) in a circle	(iv) in a parabola.
		$(1 n)(\frac{1}{2} \frac{1}{2})$.		

(ii) 2, for every n



(j) A particular solution of the difference equation $u_{x+2} + u_{x+1} + u_x = 2^x$ is

(i)
$$\frac{2^x}{7}$$
 (ii) $\frac{2^x}{3} + 4$ (iii) $-\frac{2^x}{7}$

2. Answer any four questions :

(i) 1, for every n

(a) Find the roots of the equation $z^n = (z+1)^n$, where n is a positive integer > 1. Show that the points which represent them in the z-plane are collinear.

(iii) 2, except n = -1 (iv) 1, except n = -1.

3+2

(b) If a, b, c, d > 0 and a + b + c + d = 1, prove that

$$\frac{a}{1+b+c+d} + \frac{b}{1+a+c+d} + \frac{c}{1+a+b+d} + \frac{d}{1+a+b+c} \ge \frac{4}{7}.$$

(c) If $\sin(\theta + i\varphi) = \tan \beta + i \sec \beta$, prove that $\cos 2\theta \cosh 2\varphi = 3$.

(d) Use Sturm's function to show that roots of the equation $x^3 + 3x^2 - 3 = 0$ are real and distinct.

(e) Find the values of k, for which the equation $x^4 + 4x^3 - 2x^2 - 12x = k$ has four real and unequal roots.

(f) Solve the equation $x^4 + 11x^2 + 10x + 50 = 0$ by Ferrari's method.

(g) Solve:
$$u_n = 7u_{n-1} - 12u_{n-2} + 3^n$$
 given that $u_0 = 0$; $u_1 = 2$, $(n \in \mathbb{N})$.

3. Answer any four questions:

(a) P_1 be a relation defined on the set of integers \mathbb{Z} such that $P_1 = \{(x, y) | x, y \in \mathbb{Z}, x - y = 5n, n \in \mathbb{Z}\}$. Show that P_1 is an equivalence relation. If P_2 be another relation defined as

$$P_2 = \{(x, y) | x, y \in \mathbb{Z}, x - y = 3n, n \in \mathbb{Z} \}$$

show that the relation $P_1 \cup P_2$ is symmetric but not transitive.

(b) If $f: A \to B$ be a mapping and P, Q are two non-empty subsets of A, then show that $f(P \cup Q) = f(P) \cup f(Q)$.

Give an example to show that
$$f(P \cap Q) \neq f(P) \cap f(Q)$$
.

- (c) (i) Consider the set $S = \{1, 2, 3, 4\}$ and the partition $\{\{1\}, \{2\}, \{3, 4\}\}$ of S. Find the equivalence relation corresponding to the above partition.
 - (ii) A function $f: z \rightarrow z$ is defined by

$$f(x) = \frac{x}{2}$$
, if x is even
= 7, if x is odd

Find a left inverse of f, if it exists.

3+2

- (d) If d is the gcd of two nonzero integers a and b, prove that there exist two integers u and v such that d = au + bv. Are u and v unique? Justify your answer.
- (e) Solve the system of linear congruences by Chinese remainder theorem : $x \equiv 1 \pmod{17}$, $x \equiv 1 \pmod{7}$, $x \equiv 4 \pmod{5}$.
- (f) If \leq be a relation defined on N by $a \leq b$ if and only if |a b| < 1, then prove that \leq is an equivalence relation. Is it a partial order relation? Justify your answer. 3+2
- (g) (i) Find the general solution, in positive integers, of the equation 12x 7y = 8.
 - (ii) Find the number of integers less than 900 and prime to 900.

4+1

4. Answer any one question:

5×1

(a) For what values of λ the following system of linear equations is solvable? Then solve it for those values of λ :

$$x + y + z = 2$$

$$2x + y + 3z = 1$$

$$x + 3y + 2z = 5$$

$$3x - 2y + z = k$$

(b) Find the rank of the matrix A, where

$$A = \begin{pmatrix} 1 & 3 & 7 & 1 & 2 \\ 4 & 0 & 5 & 2 & 9 \\ 3 & 3 & 4 & 7 & 4 \\ 0 & 0 & 6 & 6 & -3 \end{pmatrix}$$

by reducing to its row-reduced echelon form.