2022

MATHEMATICS — HONOURS

Paper: CC-6

Full Marks: 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

justification):	proper justification (1 mark for correct answer and 1 mark for $(1+1)\times 10$
(a) In the ring $(\mathbb{Z}_9, +, \bullet), \overline{6}$ is	
(i) a zero divisor (iii) not a zero divisor	(ii) an invertible element (iv) an idempotent element.
(b) The ring $(\mathbb{Z}_8, +, \bullet)$ has a subring	ng
(i) $\{\overline{0}, \overline{2}, \overline{4}\}$	(ii) $\{\overline{0}, \overline{2}, \overline{4}, \overline{5}\}$
(iii) $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$	(iv) $\{\overline{2}, \overline{4}, \overline{6}\}$
(c) Which one of the following is no	ot a field?
(i) ZZ/2ZZ	(ii) Z /3 Z
(iii) ZZ/4ZZ	(iv) Z /5 Z
(d) The number of solutions of the	equation $x^2 - \overline{4}x + \overline{3} = \overline{0}$ in \mathbb{Z}_{12} is
(i) 2	(ii) 4
(iii) 6	(iv) 12
(e) For any two coprime numbers m	e, n, the kernel of the ring homomorphism
$f: \mathbb{Z} \to \mathbb{Z}_m \times \mathbb{Z}_n$ defined by	$f(x) = (\overline{x}, \overline{x})$ is
(i) mnZZ	(ii) mℤ
(iii) nZZ	(iv) Z

- (f) Let Q be the ring of rational numbers and ℝ be the ring of real numbers. Let Z be the set of all integers, then
 - (i) Z is an ideal of Q but Q is not an ideal of R
 - (ii) Z is not an ideal of Q and Q is not an ideal of R
 - (iii) ZZ is not an ideal of R but Q is an ideal of R
 - (iv) Z is an ideal of Q and Q is an ideal of R
- (g) Let V be the real vector space of all 3×3 real matrices and W be the sub-space of V consisting of all symmetric matrices. Then the dimension of W is
 - (i) 9

(ii) 6

(iii) 3

- (iv) 8
- (h) Let V be the three-dimensional vector space over the field \mathbb{Z}_3 . The number of elements of V is
 - (i) 3

(ii) 9

(iii) 27

- (iv) 81
- (i) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x_1, x_2, x_3) = (x_1 x_2, x_1 x_2, 0)$. Then
 - (i) dim ker T=2

(ii) dim Im T = 2

(iii) $\ker T = \operatorname{Im} T$

- (iv) $\ker T \subseteq \operatorname{Im} T$
- (j) The eigenvalues of $A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$ are
 - (i) 1, 2, 2

(ii) 1, -1, 2

(iii) 3, 3, 8

(iv) 3, 6, 8.

Unit - I

Answer any five questions.

- 2. (a) (i) Prove that the characteristic of an integral domain is either zero or a prime number.
 - (ii) Prove that in a finite ring R with unity 1_R , $a.b = 1_R$ for some $a, b \in R$ implies $b.a = 1_R$. 2+3
 - (b) (i) Let R be a ring and $Z(R) = \{x \in R : xr = rx \text{ for all } r \in R\}$. Prove that Z(R) is a subring of R.
 - (ii) Let $\mathbb{Q}\left[\sqrt{2}\right] = \{a+b\sqrt{2} : a,b \in \mathbb{Q}\}$. Prove that the subring $\mathbb{Q}\left[\sqrt{2}\right]$ of \mathbb{R} is a subfield of \mathbb{R} .

- (c) (i) Give an example of a ring R and a proper ideal M of R which is a maximal ideal but not a prime ideal.
 - (ii) Let R be a ring in which every element is idempotent element. Prove that R is a commutative ring.
- (d) If R is a commutative ring with identity and M an ideal of R, show that R/M is a field if and only if M is a maximal ideal of R.
- (e) Let C[0, 1] be the ring of all real valued continuous functions on the closed interval [0, 1]. Show that the set $S = \left\{ f \in C[0, 1] : f\left(\frac{1}{2}\right) = 0 \right\}$ is a maximal ideal of C[0, 1]. Also prove that $C[0, 1]/S = \mathbb{R}$ where \mathbb{R} is the field of real numbers.
- (f) Let R be a ring and ρ be a ring congruence on R. Then prove that the ρ -equivalence class containing 0 is a subring of R. Is this an ideal of R? Justify your answer.
- (g) Let R be the ring $\left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ and $\varphi : R \to \mathbb{Z}$ is defined by $\varphi \begin{pmatrix} a & b \\ b & a \end{pmatrix} = a b$. Show that φ is a ring homomorphism. Determine ker φ . Show that the ring R/ker φ is isomorphic to \mathbb{Z} .
- (h) Let $I = \{(n, m) \in \mathbb{Z} \times \mathbb{Z} \mid 5 \text{ devides } n\}$. Show that I is a prime ideal of $\mathbb{Z} \times \mathbb{Z}$. Is it a maximal ideal of $\mathbb{Z} \times \mathbb{Z}$? Justify your answer.

Unit - II

Answer any four questions.

- 3. (a) Prove that there exists a basis for each finite dimensional vector space.
 - (b) (i) Find the dimension of the subspace S of \mathbb{R}^3 where $S = \{(x, y, z) \in \mathbb{R}^3 : 2x + y z = 0\}$.
 - (ii) Find the co-ordinate vector of $\alpha = (1, 3, 1)$ relative to the ordered basis $B = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ of \mathbb{R}^3 .
 - (c) Let V_1 and V_2 be two vector spaces over a field F and let V_1 be finite dimensional. If $f: V_1 \to V_2$ be a linear mapping, then prove that nullity of f + rank of f = dim V_1 .
 - (d) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ is given by T(x, y) = (x + y, y, y). Find the matrix representation of T with respect to the basis $B_1 = \{(1, 0), (0, 1)\}$ of \mathbb{R}^2 and

$$B_2 = \{(1, 1, 1), (0, 1, 0), (0, 0, 1)\} \text{ of } \mathbb{R}^3.$$

(e) Prove that two finite dimensional vector spaces V and W over a field F are isomorphic if and only if dim $V = \dim W$.

5

- (f) (i) Use Cayley-Hamilton theorem to compute A^{-1} where $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$.
 - (ii) Show that the eigenvalues of a Hermitian matrix are all real.

3+2

- (g) (i) Let P be a real orthogonal matrix with det P = -1. Prove that -1 is an eigenvalue of P.
 - (ii) If λ be an eigenvalue of an $n \times n$ matrix A, then prove that λ^2 is an eigenvalue of A^2 . 3+2