2020

MATHEMATICS — **HONOURS**

Paper: CC-7

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

R denotes the set of real number

Group - A

(Marks: 20)

1.	Answer the following multiple choice questions with only one correct optic	n. Choose the correct option
	and justify;	$(1+1)\times 10$

(a)	If x, x^2, x^3	are thr	ree linearly	independent	solutions	of a	third-order	differential	equation,	then	the
	Wronskian	W of t	the function	ns has value							

- (i) $W = 2x^3$ (ii) $W = x^3$ (iii) $W = x^2$ (iv) $W = 2x^2$.
- (b) One of the points which lies on the solution curve of the differential equation (y-x)dx + (x+y)dy = 0 with given condition y(0) = 1 is
- (i) (1,-2) (ii) (2,-1) (iii) (2,1) (iv) (-1,2). (c) If the integrating factor of $(x^7y^2 + 3y)dx + (3x^8y - x)dy = 0$ is x^my^n , then
 - (i) m = -7, n = 1 (ii) m = 1, n = -7 (iii) m = 0, n = 0 (iv) m = 1, n = 1.
- (d) Let y(x) be the solution of the differential equation $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$, y(0) = 1, $\frac{dy}{dx}\Big|_{x=0} = -1$, then y(x) attains its maximum value at
 - (i) $ln\frac{4}{3}$ (ii) $ln\frac{3}{4}$ (iii) $ln\frac{1}{2}$ (iv) none of these.
- (e) Consider the differential equation $a\frac{dy}{dx} + by = ce^{-\lambda x}$, where a, b, c are positive constants and λ is a non-negative constant. Then every solution of the differential equation approaches to $\frac{c}{b}$ as $x \to +\infty$ when
 - (i) $\lambda > 0$ (ii) $\lambda = 0$ (iii) $\lambda = \frac{b}{a}$ (iv) $\lambda = \frac{a}{b}$.

(f) Which one of the following is correct for the linear differential equation

$$(x^2 + x)\frac{d^2y}{dx^2} - 2(x+1)\frac{dy}{dx} + 2y = 0?$$

- (i) 0 is an ordinary point
- (ii) −1 is a regular singular point
- (iii) -1 is an irregular singular point
- (iv) 0 is an irregular singular point.
- (g) The initial value problem $x \frac{dy}{dx} = y$, y(0) = 0, $x \ge 0$ has
 - (i) no solution

- (ii) a unique solution
- (iii) exactly two solutions
- (iv) uncountably many solutions.
- (h) The double limit $\lim_{(x,y)\to(0,0)} \frac{|x|}{y^2} e^{-\frac{|x|}{y^2}}$
 - (i) does not exist

- (ii) exist and equal to 0
- (iii) exist and equal to 1
- (iv) exist and equal to -1.
- (i) Consider the function $f(x, y) = x^2 4xy + 4y^2 + 2x^4 + 3y^4$, then
 - (i) f has no extrema at (0, 0)
 - (ii) f has maximum value at (0, 0) which is 0
 - (iii) f has maximum value at (0, 0) which is 1
 - (iv) f has minimum value at (0, 0) which is 0.
- (j) Let $T(x, y, z) = xy^2 + 2z x^2z^2$ be the temperature at the point (x, y, z). The unit vector in the direction in which the temperature decreases most rapidly at (1, 0, -1) is

$$(i) \quad -\frac{1}{\sqrt{5}}\hat{i} + \frac{2}{\sqrt{5}}\hat{k}$$

(ii)
$$\frac{1}{\sqrt{5}}\hat{i} - \frac{2}{\sqrt{5}}\hat{k}$$

(iii)
$$\frac{2}{\sqrt{14}}\hat{i} + \frac{3}{\sqrt{14}}\hat{j} + \frac{1}{\sqrt{14}}\hat{k}$$

(iv)
$$-\frac{1}{\sqrt{5}}\hat{i} - \frac{2}{\sqrt{5}}\hat{k}$$
.

Group - B

(Marks:30)

Answer any six questions.

5×6

2. Show that a constant K can be found so that $(x+y)^K$ is an integrating factor of

$$(4x^2 + 2xy + 6y)dx + (2x^2 + 9y + 3x)dy = 0$$

and hence solve the equation.

- 3. Reduce the equation $x^3p^2 + x^2yp + a^3 = 0$ to Clairaut's form by the substitution y = u and $x = \frac{1}{v}$ and obtain the complete primitive.
- 4. Solve using the method of undetermined coefficients, the equation with initial conditions,

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 2e^x - 10\sin x, \quad y(0) = 2 \text{ and } y'(0) = 4.$$

- 5. Solve by the method of variation of parameters the equation $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} \frac{1}{x^2}y = \log x, (x > 0).$
- 6. Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4\cos\log(1+x)$ by changing the independent variables.
- 7. Use D-operator to solve:

$$\frac{d^2y}{dx^2} - y = x\sin x + \left(1 + x^2\right)e^x$$

- 8. Show that the equation of the curve, whose slope at any point (x, y) is equal to $xy(x^2y^2 1)$ and which passes through the point (0, 1) is $x^2y^2 = 1 y^2$.
- **9.** Solve for x from the system of equations

$$\frac{dx}{dt} + 4x + 3y = t$$

$$\frac{dy}{dt} = -\frac{1}{2}$$

$$\frac{dy}{dt} + 2x + 5y = e^t$$

10. Consider the plane autonomous system

$$\frac{dx}{dt} = 2x + y, \quad \frac{dy}{dt} = 3x + 4y$$

Find the general solution of the system. State the nature of the critical point of the system. Discuss its stability. Draw a phase portrait of the system.

11. Solve the equation $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + (x^2 + 2)y = 0$ in series about the ordinary point x = 0.

(4)

Group - C

(Marks: 15)

Answer any three questions.

- 12. Define limit point of a subset of $\mathbb{R} \times \mathbb{R}$. If $B = \{(a, 0); a \in \mathbb{R}\}$. Show that B is a closed set but not open in $\mathbb{R} \times \mathbb{R}$.
- 13. State the sufficient conditions for differentiability of a function $f: \mathbb{R}^2 \to \mathbb{R}$. Examine whether the sufficient conditions of differentiability are satisfied for the following function f(x, y) and hence comment

on differentiability of
$$f(x, y)$$
 at $(0, 0)$ where $f(x, y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{when } x^2 + y^2 \neq 0 \\ 0, & \text{when } x^2 + y^2 = 0. \end{cases}$ 1+4

14. If z is a function of two variables x and y and $x = c \cosh u \cos v$, $y = c \sinh u \sin v$ (c is a real number), show that

$$\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} = \frac{c^2}{2} \left(\cosh 2u - \cos 2v \right) \left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} \right).$$

- 15. Find all critical points of the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = x^3 + y^3 3x 12y + 40$ for $(x, y) \in \mathbb{R}^2$. Also examine whether the function f attains a local maximum or a local minimum at each of these critical points.
- 16. Find the volume of the greatest rectangular parallelopiped that can be inscribed in the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, by the method of Lagrange's multipliers.