2020

MATHEMATICS — **GENERAL**

Paper: DSE-A-1

(Particle Dynamics)

Full Marks: 65

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাণ্ডলি পূর্ণমান নির্দেশক।

Day - 2

বহু বিকল্পক নৈৰ্ব্যক্তিক প্ৰশাবলী							
١ د	নিশ্ব	লিখিত সব প্রশ্নের উত্তর	া দাও ঃ		2×2c		
(ক) একটি কণা সরলরেখা বরাবর $S^2=6t^2+4t+3$ গতির নিয়মে চলে, যেখানে S হল সরণ এবং t হল সংত্বনণ নিম্নলিখিত কোনটির সঙ্গে সরলভেদে থাকবে ?					ানে S হল সরণ এবং t হল সময়। তবে কণাটির		
		(অ) $\frac{1}{S^3}$	(আ) $\frac{1}{S^2}$	(₹) S ²	$(\overline{\mathfrak{P}}) \frac{1}{S}$		
	(খ)	যদি একটি কণা $r=a$ থাকবে?	cosθ বক্রের উপর কেন্দ্রীয়	বল দ্বারা চালিত হয়, তবে	ব কণাটি নিম্নলিখিত কোনটির সঙ্গে সরলভেড়ে		
		(আ) $\frac{1}{r^5}$	(আ) $\frac{1}{r^3}$	$(\overline{\mathfrak{d}}) r^3$	$(\overline{\aleph}) r^5$		
	(গ)	C.G.S. পদ্ধতিতে কা	র্যের পরম একক হল				
		(অ) ফুট-পাউভাল	(আ) আর্গ	(ই) অশ্বশক্তি	(ঈ) কোনোটিই নয়।		
	(ঘ)	2 কিলোগ্রাম ভরের এ	কটি বস্তুকে 5 মিটার উচ্চত	গয় তুলতে কার্যের পরিমাণ	া হল		
		(অ) 98 জুল	(আ) 95 জুল	(ই) 97 জুল	(ঈ) 96 জুল।		
	(ঙ) কেন্দ্রীয় বলের অধীনে চলমান কোনো বস্তুর ক্ষেত্রে ধ্রুবক h-এর মান হল						
		(অ) $h = r \frac{d\theta}{dt}$	(আ) $h = \frac{d\theta}{dt}$	$(\overline{\mathfrak{F}}) h = \frac{1}{r} \frac{d\theta}{dt}$	$(\overline{\mathfrak{R}}) h = r^2 \frac{d\theta}{dt} \mid$		
	(চ)	সরল দোলগতিতে চল	মান কোনো বস্তুকণার সমীব	করণ $x = cos\left(\frac{\pi t}{3}\right)$ হ	ল, দোলনের পর্যায়কাল হবে		
		(অ) 9 একক	(আ) 6 একক	(ই) 3 একক	(ঈ) 12 একক।		
					Please Turn Ove		

- (ছ) কোনো বস্তুর উপর ক্রিয়াশীল ঘাতের (Impulse) পরিমাপ হল
 - (অ) ঘাত = গতিশক্তির পরিবর্তন
- (আ) ঘাত = ভরবেগের পরিবর্তন
- (ই) ঘাত = ক্রিয়াশীল বল দ্বারা কার্যের পরিমাণ
- (ঈ) কোনোটিই নয়।
- (জ) $\frac{1}{4}$ পাউন্ভ ভরবিশিষ্ট একটি ক্রিকেট বল 15 ফুট/সেকেন্ড গতিতে ধাবমান। বলটি একটি ব্যাটের আঘাতে 40 ফুট/সেকেন্ড গতিবেগে বিপরীত অভিমুখে ধাবিত হলে ব্যাটের অভিঘাত বল হল
 - (অ) $13\frac{3}{4}$ সেকেভ পাউভাল

(আ) 13 সেকেভ পাউভাল

(ই) $\frac{3}{4}$ সেকেভ পাউভাল

- (ঈ) কোনোটিই নয়।
- (ঝ) একটি কণা $S=rac{1}{2}vt$ গতিসূত্র মেনে সরলরেখায় চলে, যেখানে v কণাটির গতিবেগ। তাহলে ত্বরণ হল
 - (অ) বেগের সঙ্গে সমানুপাতিক
- (আ) বেগের বর্গের সঙ্গে সমানুপাতিক
- (ই) বেগের অন্যোন্যকের সঙ্গে সমানুপাতিক
- (ঈ) ধ্রুবক।
- (এঃ) একটি বস্তুকণার চলমান পথের ব্রক্তের সমীকরণ $r=ae^{ heta}$, যার কৌণিক বেগ ধ্রুবক। তাহলে অরীয় ত্রণের মান
 - (অ) r-এর সঙ্গে সমানুপাতিক

(আ) θ-এর সঙ্গে সমানুপাতিক

(ই) শূন্য নয় এমন ধ্রুবক

- (ঈ) শৃন্য।
- ২। *যে-কোনো একটি* প্রশ্নের উত্তর দাও ঃ

رد×ځ

- ক) সমতলীয় বক্ররেখায় চলমান একটি কণার ত্বরেণের স্পর্শক উপাংশ নির্ণয় করো।
- (খ) M ভরবিশিষ্ট কামান থেকে m ভরবিশিষ্ট গোলা নিক্ষেপের জন্য বিস্ফোরণে E পরিমাণ গতিশক্তি সৃষ্টি হয়। দেখাও যে কামানের গোলার প্রারম্ভিক গতিবেগ ছিল $\sqrt{\frac{2ME}{(M+m)\,m}}$ ।

যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও ঃ

50×6

৩। (ক) ধ্রুবক ঘাতসম্পন্ন একটি ইঞ্জিন, যা প্রতি সেকেন্ডে H একক কার্য করে, তা একটি ট্রেনকে টেনে নিয়ে যাচ্ছে। যদি সমগ্র ট্রেনের ভর M হয় এবং বাধা R-কে ধ্রুবক বলে ধরা হয়, তবে দেখাও যে স্থিতাবস্থা থেকে V গতিবেগ উৎপন্ন করতে

$$\left(rac{MH}{R^2}\lograc{H}{H-RV}-rac{MV}{R}
ight)$$
 সেকেন্ড সময় লাগবে।

(খ) R পাউভাল বাধার বিরুদ্ধে V ফুট/সেকেন্ড গতিতে চলন্ত একটি ট্রেনের ইঞ্জিনের অশ্বশক্তি কত?

৮+২

- 8। (ক) একটি কণা সরলরেখা বরাবর $x=a\cos{(nt+b)}$ গতির নিয়মে চলে। দেখাও যে কণাটির ত্বরণ কেন্দ্রাভিমুখী এবং দূরত্বের সঙ্গে সরলভেদে আছে।
 - (খ) সরল দোলন গতিসম্পন্ন একটি কণার কেন্দ্রবিন্দু O-এর সাপেক্ষে পর্যায়কাল (period) T এবং এটি OP অভিমুখে P বিন্দুকে V গতিবেগে অতিক্রম করে। যদি কণাটি P বিন্দুতে ফিরে আসতে t সময় নেয় তাহলে দেখাও যে $t=\frac{T}{\pi}\tan^{-1}\left(\frac{VT}{2\pi x}\right)$ এবং $OP=\frac{VT}{2\pi}\cot\frac{\pi t}{T}$, যেখানে OP=x। 2+(8+8)
- ৫। (ক) নিউটনের দ্বিতীয় গতিসূত্রটি বিবৃত করো।
 - (খ) বলকেন্দ্র O থেকে x দূরত্বে $\mu x^{-\frac{5}{3}}$ আকর্ষক বলের অধীনে একটি কণা সরলরেখায় গতিশীল। যদি O বিন্দু থেকে a দূরত্বে থেকে কণাটি স্থিরাবস্থা থেকে যাত্রা শুরু করে, তবে দেখাও যে কণাটি $\frac{2a^{\frac{4}{3}}}{\sqrt{3\mu}}$ সময়ে O বিন্দুতে পৌঁছাবে। ২+৮
- ৬। (ক) একটি বস্তুকণা $x^2=8y$ অধিবৃত্তাকার পথে এরূপ বলের অধীনে গতিশীল হয়, যা সর্বদাই y অক্ষের সঙ্গে লম্ব। বলের সূত্রটি নির্ণয় করো এবং কণাটির গতিপথের যে-কোনো একটি বিন্দুতে তার গতিবেগ নির্ণয় করো।
 - (খ) রৈখিক ভরবেগের নিত্যতার সূত্রটি বিবৃত করো। ৮+২
- ৭। (ক) m ভরবিশিষ্ট একটি বস্তুকণার উপর $m\mu(r^{-3}+8c^2r^{-5})$ পরিমাণ কেন্দ্রাভিমুখী বল ক্রিয়া করে। কণাটি যদি c দূরত্বে apse থেকে $\frac{3\sqrt{\mu}}{c}$ বেগে প্রক্ষিপ্ত হয়, তাহলে প্রমাণ করো যে কণাটির কক্ষপথের সমীকরণ হবে $r=c\cos\left(\frac{2}{3}\theta\right)$ ।
 - (খ) কেপলারের গ্রহগতির সূত্রগুলি বিবৃত করো। ৮+২
- ৮। (ক) একটি বস্তুকণা একটি মাধ্যমে ছোঁড়া হল। মাধ্যমের বাধা কণার গতিবেগের ঘনের সঙ্গে সমানুপাতিক এবং অন্য কোনো বল কণার উপর কাজ করছে না। t সময়ে বস্তুকণাটি যদি d দূরত্ব যায় এবং গতিবেগ যদি v_1 থেকে হ্রাস পেয়ে v_2 হয়, তবে দেখাও যে $\frac{d}{t} = \frac{2v_1v_2}{(v_1+v_2)}$ ।
 - (খ) শক্তির সংরক্ষণ সূত্রটি বিবৃত করো। ৮+২
- **৯।** (ক) একটি কণার প্রতি একক ভরের উপর F আকর্ষক বলের অধীনে কেন্দ্রীয় কক্ষপথে বিচরণশীল। ওই কণার কক্ষপথের অবকল সমীকরণ নিম্নোক্ত আকারে প্রকাশ করো ঃ

$$\frac{d^2u}{d\theta^2} + u = \frac{F}{h^2u^2}$$
। (প্রতীকগুলি প্রচলিত অর্থে ব্যবহৃত)

(খ) Apse এবং Apsidal distance-এর সংজ্ঞা দাও।

৮+২

1.

১০। m ভরবিশিস্ট কোনো একটি কণা $\left\{\mu\div\left($ দূরত্ব $\right)^2\right\}$ এই কেন্দ্রীয় ত্বরণ দ্বারা গতিশীল। কণাটিকে R দূরত্ব থেকে V গতিবেগে উৎক্ষেপণ করা হয়েছে। দেখাও যে, কণাটির গতিপথ একটি সমপরাবৃত্ত (Rectangular hyperbola) হবে যদি প্রক্ষেপ কোণটি হয় $\sin^{-1}\left[\mu\div\left\{VR\sqrt{\left(V^2-\frac{2\mu}{R}\right)}\right\}\right]$

[English Version]

The figures in the margin indicate full marks.								
Multiple Choice Questions								
Answer <i>all</i> the questions:								
(a) A particle moves along a straight line according to the law $S^2 = 6t^2 + 4t + 3$, where S is the displacement and t is the time. Then its acceleration varies as								
(i) $\frac{1}{S^3}$	(ii) $\frac{1}{S^2}$	(iii) S^2	(iv) $\frac{1}{S}$.					
(b) If a particle describes the curve $r = a \cos\theta$ under a central force to the pole, then the force varies								
as								
(i) $\frac{1}{r^5}$	(ii) $\frac{1}{r^3}$	(iii) <i>r</i> ³	(iv) r^5 .					
(c) In C.G.S. system the absolute unit of work is								
(i) Foot-poundal	(ii) Erg	(iii) Horsepower	(iv) None of these.					
(d) The work done in raising a mass of 2kg to a height of 5 meter is								
(i) 98 joules	(ii) 95 joules	(iii) 97 joules	(iv) 96 joules.					
(e) For a central orbit, the expression for the constant h is								
(i) $h = r \frac{d\theta}{dt}$	(ii) $h = \frac{d\theta}{dt}$	(iii) $h = \frac{1}{r} \frac{d\theta}{dt}$	(iv) $h = r^2 \frac{d\theta}{dt}$.					
(f) For a Simple Harmonic motion $x = \cos\left(\frac{\pi t}{3}\right)$, the time period is								
(i) 9 unit	(ii) 6 unit	(iii) 3 unit	(iv) 12 unit.					
(g) The impulse acting on a body is given by								
(i) Impulse = Change in Kinetic energy (ii) Impulse = Change in Momentum								
(iii) Impulse = Workdone by acting force (iv) None of these.								

(h) A cricket ball weighing $\frac{1}{4}lb$ is moving with a velocity of 15ft/second and is struck by a bat which causes it to travel in the opposite direction with a velocity of 40ft/second. Then the impulsive force of the bat is

(5)

(i) $13\frac{3}{4}$ sec-pondals

(ii) 13 sec-poundals

(iii) $\frac{3}{4}$ sec-pondals

- (iv) None of these.
- (i) The law of motion of a particle moving in a straight line is $S = \frac{1}{2}vt$. Then the acceleration is
 - (i) proportional to velocity
- (ii) proportional to square of velocity
- (iii) proportional to inverse of velocity
- (iv) constant.

[v is the velocity of the particle]

- (j) A particle describes a curve $r = ae^{\theta}$ with constant angular velocity. Then the radial acceleration is
 - (i) proportional to *r*

(ii) proportional to θ

(iii) non-zero constant

(iv) zero.

2. Answer any one question:

5×1

- (a) Find the expression for tangential component of velocity of a particle moving in a plane.
- (b) A Cannon ball of mass m is projected from a Cannon of mass M by an explosion which generates $\frac{2ME}{}$

kinetic energy E. Prove that the initial velocity of the Cannon ball is $\sqrt{\frac{2ME}{(M+m)m}}$.

Answer any five questions.

10×5

- 3. (a) An engine works at a constant power H units of work per second. It pulls a train of total mass M against a constant resistant R. Show that the train acquires velocity V in time $\left(\frac{MH}{R^2}\log\frac{H}{H-RV}-\frac{MV}{R}\right)$ seconds.
 - (b) What is the Horsepower of the engine which keeps a train moving with velocity V ft/second against a resistance of R poundals? 8+2
- **4.** (a) A particle moves along a straight live under the law of motion given by $x = a \cos(nt + b)$. Show that the acceleration is directed to the origin and varies as the distance.
 - (b) A particle is performing a simple harmonic motion of period T about a centre O and it passes through a point P with a velocity V in the direction OP. If the particle returns to P in time t, then show that

$$t = \frac{T}{\pi} \tan^{-1} \left(\frac{VT}{2\pi x} \right)$$
 and $OP = \frac{VT}{2\pi} \cot \frac{\pi t}{T}$, where $OP = x$.

Please Turn Over

- 5. (a) State Second law of Newton.
 - (b) A particle moves in a straight line under the action of an attractive force $\mu x^{-\frac{5}{3}}$, when at a distance x from the centre of force O. If it starts from rest at a distance 'a' from O, then show that it will arrive at O in time $\frac{2a^{\frac{4}{3}}}{\sqrt{3\mu}}$.
- 6. (a) A particle describes a parabola $x^2 = 8y$ under a force which is always perpendicular to y-axis. Find the law of force and the velocity of the particle at any point on its orbit.

8 + 2

8 + 2

- (b) State the principle of conservation of linear momentum.
- 7. (a) A particle of mass m moves under a central attractive force $m\mu(r^{-3} + 8c^2r^{-5})$ and is projected from an apse at a distance c with velocity $\frac{3\sqrt{\mu}}{c}$. Prove that the equation of the orbit is $r = c\cos\left(\frac{2}{3}\theta\right)$.
 - (b) Write Kepler's laws on planetary motion. 8+2
- 8. (a) A particle is projected in a medium whose resistance is proportional to the cube of the velocity and no other force acts on the particle. While the velocity diminishes from v_1 to v_2 , the particle traverses a distance d in time t. Show that $\frac{d}{t} = \frac{2v_1v_2}{(v_1 + v_2)}$.
 - (b) State the principle of conservation of energy.
- 9. (a) Establish the differential equation of the path for the motion of a particle moving in a central orbit under an attractive force F per unit mass, in the form $\frac{d^2u}{d\theta^2} + u = \frac{F}{h^2u^2}$ (symbols have their usual meanings).
 - (b) Define apse and apsidal distances. 8+2
- 10. A particle of mass m is moving with central acceleration $\left\{\mu \div (\text{distance})^2\right\}$. It is projected with a velocity V at a distance R. Show that its path is a rectangular hyperbola if the angle of projection is $\sin^{-1}\left[\mu \div \left\{VR\sqrt{\left(V^2 \frac{2\mu}{R}\right)}\right\}\right]$.