2022

MATHEMATICS — GENERAL

Paper: DSE-A-1

(Particle Dynamics)

Full Marks: 65

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাণ্ডলি পূর্ণমান নির্দেশক।

	নিম্নলিখিত	20100	5		
21	ाननाना य ७	প্রমণ্ডালব	ডওব	দাও	0

5×50

- (ক) গতিশীল একক ভরের একটি কণার গতির অবকল সমীকরণটি হল $\ddot{x} = -\mu x$ । তাহলে ঐ গতিশীল কণার দোলনের সময়কাল হবে
 - (অ) শূন্য

(আ) µ

(麦) 2√μ

- $(\overline{\Re}) 2\pi/\sqrt{\mu}$
- (খ) সরলরেখার গতিশীল একটি কণার গতির সূত্রটি হয় $S^2=6t^2+4t+3$, যেখানে S হল t টাইমে কণাটির দূরত্ব, তাহলে t=1 সময়ে কণাটির গতিবেগ হয়

(অ) √13

(আ) 8/√13

(₹) 8√13

(ঈ) শূন্য

(গ) ক্ষমতার মাত্রা =

(의) ML²T²

(আ) M²L²T²

(氢) ML²T⁻³

(茅) ML²T³

্ঘ) m ওজনের একটি গোলা, M ওজনের একটি বন্দুক থেকে ছোঁড়া হলে, E গতিশক্তি উৎপন্ন হয়। তাহলে গোলাটির প্রারম্ভিক বেগ হবে

(আ)
$$\sqrt{\frac{2ME}{(M+m)m}}$$

(আ)
$$\sqrt{\frac{2E}{m+M}}$$

$$\overline{(z)}$$
 $\sqrt{\frac{E}{M}}$

$$(\overline{\aleph}) \sqrt{\frac{2mE}{m+M}}$$

(8)	গতিশীল একটি কণার সম্পর্ক দ্বারা যুক্ত?	গতিপথটি হল $r=ae^{\theta}$,	যেখানে র্যাডিয়াল ত্বরণ হল	ন শৃন্য। তাহ	লে কণাটির	বেগ <i>V</i> ,	নিম্নের	কোন
	(5) V-2		(out) V					

 (\mathfrak{A}) $V \propto r$

(₹) V x r3

(第) $V \propto r^{-1}$

(চ) কেন্দ্রীয় বল F দ্বারা গতিশীল একটি কণার গতিপথের পেডাল সমীকরণটি হল $P^2=ar$, তাহলে কেন্দ্রীয় বল F সরলভেদে

(আ) F∝r

(আ) $F \propto r^2$

 $(\overline{z}) F \propto r^{-2}$

 $(\overline{R}) F \propto r^{-1}$

(ছ) পৃথিবীপৃষ্ঠ থেকে h উচ্চতায় অবস্থিত m ভরবিশিষ্ট একটি বস্তুকণার স্থিতিশক্তি হল

(国) mgh

(আ) mg

(3) gh

(ने) mg-gh

(জ) m_1 ও m_2 ভরের দুটি বস্তুকণা যেখানে $m_1 \neq m_2$ একটি হালকা অপ্রসারিত তার দ্বারা একটি মসৃণ স্থির পুলির সাথে যুক্ত আছে। তাহলে তারটির টান T হবে

$$(\triangledown) T = \frac{m_1 + m_2}{m_1 m_2} g$$

(আ)
$$T = \frac{2m_1m_2}{m_1 + m_2}g$$

$$(\overline{\mathfrak{Z}}) \quad T = \frac{m_1 - m_2}{m_1 + m_2} g$$

$$(\overline{\mathfrak{P}}) \quad T = \frac{m_1 m_2}{m_1 - m_2} g$$

(ঝ) সরলরেখায় গতিশীল একটি কণার গতিবেগের সমীকরণটি হল $V^2=ax^2+2bx+C$, যেখানে t সময়ে কণাটির গতিবেগ V এবং x হল নির্দিষ্ট বিন্দু থেকে কণাটির দূরত্ব। তাহলে গতিশীল কণাটির ত্বরণ হবে

(回) ax

(আ) ax + b

$$(\mathfrak{F})$$
 $a\left(x+\frac{b}{a}\right)$

 $(\overline{\Re})$ ax + bx

(ঞ) নিম্নলিখিত কোন রাশিটি স্কেলার?

(অ) সরণ

(আ) দ্রুতি

(ই) বেগ

(ঈ) তুরণ।

২। নিম্নের যে-কোনো একটি প্রশ্নের উত্তর দাও ঃ

(XX)

(क) সমতলে গতিশীল একটি কণার স্পর্শক বরাবর এবং অভিলম্ব বরাবর ত্বরণের উপাংশগুলি নির্ণয় করো।

(খ) প্রমাণ করো যে, কেন্দ্রীয় বলের প্রভাবে গতিশীল কণার গতিপথটির অবকল সমীকরণ হবে $\frac{d^2u}{d\theta^2} + u = \frac{F}{h^2u^2}$, যেখানে F, u, h, 0 তাদের স্বাভাবিক চিহ্নগুলি চিহ্নিত করে।

৩। *যে-কোনো পাঁচটি* প্রশ্নের উত্তর দাও ঃ

Soxe

- ক) সরলরেখায় গতিশীল একটি কণার ত্বরণ সরলরেখার উপরিস্থ একটি নির্দিষ্ট বিন্দু হতে দূরত্বের সঙ্গে সমানুপাতিক এবং ত্বরণটি সর্বদা নির্দিষ্ট বিন্দু অভিমুখে হয়, তাহলে প্রমাণ করো যে কণাটি একটি সরল দোলগতি হবে। তাহলে এই সরল দোলনের কম্পায় ও বিস্তার নির্ণয় করো।
- (খ) 2l দৈর্ঘ্য বিশিষ্ট একটি ভারি শিকল, স্থির মসৃণ পুলির উপর দিয়ে ঝোলানো আছে। শিকলের এক প্রান্তের দৈর্ঘ্য l+C এবং অপর প্রান্তের দৈর্ঘ্য l-C। যদি শিকলের ছোটো প্রান্তটি ছেড়ে দেওয়া হয়, তাহলে পুলির উপর দিয়ে শিকলটি প্লিপ করে

যাবার সময়টি হবে
$$\sqrt{\frac{l}{g}}\log_e\left\{\frac{\left(l+\sqrt{l^2-C^2}\right)}{C}\right\}$$
।

(গ) ঘাত এবং ঘাত বল বলতে কী বোঝো? (m_1+m_2) ভরের একটি বস্তু অভ্যন্তরীণ বিস্ফোরণ দ্বারা ভেঙে m_1 ও m_2 ভরের দুটি বস্তু হয় এবং ঐ সময় গতিশক্তির পরিমাণ হয় E। যদি ভাঙ্গার পরে বস্তু দুটি একই সরলরেখায় গতিশীল হয়, তাহলে

প্রমাণ করো যে তাদের আপেক্ষিক গতিবেগ হবে
$$\sqrt{rac{2Eig(m_1+m_2ig)}{m_1m_2}}$$
। ৩+৭

(ঘ) স্থির অবস্থা থেকে $\mu(\text{distance})^{-2}$ আকর্ষক বলের অধীনে একটি কণা সরলরেখায় গতিশীল এবং ওই সরলরেখার উপর অবস্থিত একটি নির্দিষ্ট বিন্দুর অভিমুখী। যদি কণাটির প্রারম্ভিক দূরত্ব বলের কেন্দ্র থেকে 2a হয় তাহলে দেখাও যে কণাটি

$$\left(\frac{\pi}{2}+1\right)\left(\frac{a^3}{\mu}\right)^{\frac{1}{2}}$$
 সময়ে a দূরত্বে থাকবে।

(৬) y অক্ষের ধনাত্মক দিকের সমান্তরাল কোনো বলের প্রভাবে যদি কোনো বস্তুকণার গতিপথ

$$y = c \cos h \left(\frac{x}{c}\right)$$

ক্যাটেনারি হয়, তবে বলের সূত্রটি নির্ণয় করো।

30

- (চ) যদি কণার গতিপথ হয় $r=ae^{\theta\cot\alpha}$ এবং কণাটির কেন্দ্রিক গতিবেগ ধ্রুবক হয়, তাহলে কণাটির লব্ধি ত্বরণটির মান হবে $\frac{v^2}{r}$ এবং ত্বরণটি রেডিয়াস ভেক্টরের সাথে 2α কোণ করে থাকবে, যেখানে v হল কণাটির দ্রুতি।
- ছে) কেন্দ্রীয় বলের প্রভাবে কোনো গতিশীল কণার গতিপথটি হল $r=a(1-\cos\theta)$ । তাহলে প্রদত্ত বলের নিয়মটি নির্ণয় করো। যদি কোনো অ্যাপস দূরত্বে কণাটির উপর প্রযুক্ত বল F এবং গতিবেগ V হয়, তাহলে প্রমাণ করো $3V^2=4aF$ । ৬+8
- (জ) গ্রহের গতি সম্বন্ধে কেপলারের সূত্রগুলি লেখো। একটি কণা μ/(দূরত্ব)² কেন্দ্রীয় ত্বরণে গতিশীল এবং কণাটি R দূরত্ব থেকে V গতিবেগে উৎক্ষিপ্ত হলে, দেখাও যে গতিপথটি হবে সমপরাবৃত্ত, যেখানে উৎক্ষেপণ কোণটি হবে

$$\sin^{-1}\left[\mu/\left\{VR\left(V^2-2\mu R\right)^{\frac{1}{2}}\right\}\right]$$

Please Turn Over

1. Answer the following questions.

[English Version]

The figures in the margin indicate full marks.

(a) The motion of the particle of unit mass described by differential equation $\ddot{x} = -\mu x$, then the time

1×10

	period of oscillation of the motion of t	ine pa	irticle is
	(i) Zero	(ii)	μ
	(iii) $2\sqrt{\mu}$	(iv)	$2\pi/\sqrt{\mu}$.
(b)	A particle moves along the straight l distance of the particle at time t . Then	ine a	eccording to the law $S^2 = 6t^2 + 4t + 3$, where S is the velocity of the particle at time $t = 1$ is equal to
	(i) √13	(ii)	8/√13
	(iii) 8√13	(iv)	Zero.
(c)	The dimension of Power is		
	(i) ML ² T ²	(ii)	$M^2L^2T^2$
	(iii) ML ² T ⁻³		ML^2T^3 .
(d)	A shell of mass m is fired from a gun of velocity of the shell is equal to	f mas	s M which generates kinetic energy E . Then the initial
	(i) $\sqrt{\frac{2ME}{(M+m)m}}$	(ii)	$\sqrt{\frac{2E}{m+M}}$
	(iii) $\sqrt{\frac{E}{M}}$	(iv)	$\sqrt{\frac{2mE}{m+M}}$.
(e)	A particle describes the path $r = ae^{\theta}$ Then speed V of the particle is given by	in so	uch a manner that the radial acceleration is zero.
	(i) $V \propto r^2$	(ii)	$V_{\infty}r$
	(iii) $V \propto r^3$		$V \propto r^{-1}$
(f)	A central force F describes the path of the F varies as	he pa	rticle given by pedal equation $P^2 = ar$, then the force
	(i) $F \propto r$	(ii)	$F \propto r^2$
	(iii) $F \propto r^{-2}$	(iv)	$F \propto r^{-1}$.

- (g) The potential energy of a particle of mass m at a height h above the Earth's surface is
 - (i) mgh

(ii) mg

(iii) gh

- (iv) mg gh.
- (h) Two unequal masses m_1 and m_2 are connected by a light inextensible string passing over a smooth fixed pulley. Then tension T of the string is
 - (i) $T = \frac{m_1 + m_2}{m_1 m_2} g$

(ii) $T = \frac{2m_1m_2}{m_1 + m_2}g$

(iii) $T = \frac{m_1 - m_2}{m_1 + m_2} g$

- (iv) $T = \frac{m_1 m_2}{m_1 m_2} g$.
- (i) The velocity of a particle moving in a straight line given by the relation $V^2 = ax^2 + 2bx + C$, where V is the velocity of the particle and x is the distance of the particle from fixed point at tike t. The acceleration of the particle is
 - (i) ax

(ii) ax + b

(iii) $a\left(x+\frac{b}{a}\right)$

- (iv) ax + bx.
- (j) Which of the following is scalar?
 - (i) Displacement

(ii) Speed

(iii) Velocity

- (iv) Acceleration.
- 2. Answer any one from the following:

5×1

- (a) Deduce expression for the tangential and normal component of acceleration of a particle describing a plane curve.
- (b) Prove that the differential equation of the path of the particle moving under a central force is

$$\frac{d^2u}{d\theta^2} + u = \frac{F}{h^2u^2}$$
, where F, u, h, θ have their usual meanings.

3. Answer any five questions:

10×5

- (a) When a particle moves in a straight line so that its acceleration at any point of its motion is always directed to a fixed point on the line and is proportional to its distance from a fixed point, prove that the particle is said to execute simple harmonic motion. Also mention the frequency and amplitude of the simple harmonic motion.
- (b) A heavy uniform chain of length 2l, hangs over a small smooth fixed pulley, the length l+C being at one edge and l-C at the other. If the end of the shorter portion be held and then let go,

prove that the chain will slip off the pulley in time $\sqrt{\frac{l}{g}} \log_e \left\{ \frac{\left(l + \sqrt{l^2 - C^2}\right)}{C} \right\}$.

Please Turn Over

(c) What do you mean by Impulse and Impulsive force. A body of mass $(m_1 + m_2)$ is split into two parts of masses m_1 and m_2 by internal explosion which generate kinetic energy E. If after explosion the parts move in the same line as before, then prove that their relative velocity is

$$\sqrt{\frac{2E(m_1+m_2)}{m_1m_2}}$$
. 3+7

(d) A particle moves from rest in a straight line under an attractive force $\mu(\text{distance})^{-2}$ per unit mass to a fixed point on the line. Show that if the initial distance from the center of force be 2a then

the distance of the particle will be a after a time
$$\left(\frac{\pi}{2}+1\right)\left(\frac{a^3}{\mu}\right)^{\frac{1}{2}}$$
.

- (e) A particle describes the catenary $y = c \cos h\left(\frac{x}{c}\right)$ under a force which is always parallel to the positive direction of y axis. Find the law of force.
- (f) If the particle describes the curve $r = ae^{\theta \cot \alpha}$ with a constant angular velocity, then prove that the resultant acceleration makes an angle 2α with the radius vector and is of magnitude $\frac{v^2}{r}$, where v is the speed of the particle.
- (g) Find the law of force to the pole when the path is $r = a(1 \cos\theta)$. If F be the force and v be velocity at an apse then prove that $3V^2 = 4aF$.
- (h) State the Kepler's laws of planetary motion. A particle moves with a central acceleration $\mu/(\text{distance})^2$, and it is projected with velocity V at a distance R. Show that its path is a rectangular hyperbola if the angle of projection is

$$\sin^{-1}\left[\mu/\left\{VR\left(V^2-2\mu R\right)^{\frac{1}{2}}\right\}\right].$$