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Abstract
In this work, one new heterometallic Cu(II)/Na(I) 3D coordination polymer [CuNa(Hhpmet)(H2O)(OH)]n (1) has been 
synthesized by using the Schiff base ligand namely, 2-[(E)-(2-hydroxyphenyl)methyleneamino]terephthalic acid [H3hpmet], 
Cu(NO3)2.6H2O and NaOH. Complex 1 was characterized by elemental analysis, FT-IR, UV–Vis, NMR spectroscopic meas-
urements along with and single-crystal X-ray diffraction study. The single-crystal X-ray diffraction (XRD) analysis reveals 
that in complex 1, the copper (II) adopts a distorted square pyramidal geometry with the addition index parameter (τ) value 
0.018 whereas Na(I) center possess tetrahedral geometry. Here, DFT study was carried out to give insight in HOMO–LUMO 
energy gap, MEP surface and topology analysis whereas Hirshfeld surface (HS) study further points toward packing interac-
tions. In addition, complex 1 was investigated for its antibacterial efficacy toward Gram-positive and Gram-negative strains. 
Molecular docking assessed antibacterial potency of the complex 1 toward protein molecules.

Introduction

Utilization of non-covalent interaction leading to self-
assembly of individual molecules is nowadays one of the 
major frontier research area [1–4]. Extensive study of self-
assembly has already built a widespread development in the 
field of crystal engineering. In crystal engineering, premedi-
tated synthesis of crystalline materials is possible, where 

the molecular self-assembly in the solid state can be inter-
preted from the understanding of molecular building blocks 
[5–8]. A designed synthesis of a predetermined assembly 
is an interesting area as it may be handy as a functional 
material, which can be used in supramolecular chemistry 
[9–14], liquid crystal engineering [15, 16], crystal engi-
neering [17–19], molecular electronics [20, 21], host–guest 
chemistry [22–25], biotechnology [26, 27] etc.

But as a matter of fact, prediction of the self-assembled 
structure sometimes does not accomplish due to weak nature 
of directing forces. A minor change in the reaction condi-
tion or even a small modification of the ligand framework 
can be helpful to produce unprecedented self-assembled 
structures [28]. Typically, hydrogen bonding interactions 
are mainly responsible for designing the supramolecular 
motifs [29–31] but other weak forces such as π···π [32–36] 
and CH···π [37–39] interactions are also suitable.

The aggregation of soft metal centers leading to cova-
lently bonded clusters is familiar [9–19], for example Ru- 
and Os-carbonyl [40–42] along with Au-clusters [43]. On 
the contrary, hard metal cations generally devoid of forming 
metal–metal bonds and usually need bridging ligands mainly 
carboxylate [44–46], oxide or hydroxide [47–50] for aggre-
gation. Concerning the synthesis of multinuclear heterome-
tallic complexes containing hard metal centers, two synthetic 
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strategies have been chosen. In the synthesis, polynucleating 
ligands exhibiting multi-inequivalent coordination sites can 
be used [51]. Otherwise, a ligand–metal complex which is 
coordinatively unsaturated can be used in the second step 
of the synthesis [52]. This second method has advantages 
over the former one, heterometallic complexes form with 
the systematic combination of the various metal ions used. 
In the presence of a hard center, the coordination chemistry 
of alkali metal ions has attracted interest so that it can build 
up molecular biomimetic systems capable of the selective 
transport of metal ions. Tridentate Schiff bases ligands, are 
the most used complexing agents for the alkali metal ions 
[51, 52]. In the recent years, bimetallic coordination com-
pounds of 3d-ns metal ions have been the point of interest of 
several studies [53–56]. The simplest compartmental ligands 
are conceivably Salen-type Schiff bases, where their depro-
tonated units are enthralling side-off compartmental ligands 
with two dissimilar coordination spheres making it possible 
the formation of multi-metallic complexes [57–60]. The 
inner N2O2 compartment can accommodate a 3d metal ion, 
whereas the outer O2O′2 compartment is capable of bind-
ing with an additional metal ion to form 3d-ns, 3d-np, 3d-
3d and 3d-4f homo- and heteronuclear complexes [53–67]. 
Recently, it is observed that square-planar Cu(II)–Na(I) 
complexes can be synthesized with Schiff bases obtained 
from the condensation of amines with hydroxylated alde-
hydes and saturating their residual coordination sites by 
simultaneous use of an auxiliary Na metal ions [68, 69].

Following this approach, the Schiff base ligand formed 
from the condensation of 2-amino terephthalic acid along 
with pyridine-2-carbaldehyde has been utilized by our group 
earlier [59, 63, 70].

With the endeavor for preparing new multinuclear het-
erometallic coordination polymers, the H2Pymat Schiff 
base ligand was taken to incorporate an additional alcoholic 
donor group, as salicylaldehyde is taken in place of pyridine-
2-carbaldehyde with a different synthetic approach. Gener-
ally, the Salen ligand (SL) is a distinct class of N/O-donor 
ligands (N2O2/N2O4-type) coordinated with Mn+ ions via the 
N-atom of two azomethine group (–CH=N) accompanied 
with deprotonated phenolic O-atom. But, as we use a sin-
gle amino group containing ligand, which generates a NO2 
type of ligand, the so-called compartment cannot be formed. 
Rather, due to the presence of carboxylato groups residing 
at para positions to each other enhances its ability to form 
supramolecular motifs, which is clearly evident from our 
previous works [59, 63, 70], The Schiff base, 2-[(E)-(2-hy-
droxyphenyl)methyleneamino]terephthalic acid (H3hpmet, 
Scheme 1), was prepared by the condensation reaction of 
2-aminoterephthalic acid and salicylaldehyde.

A new 3D coordination polymer [CuNa(Hhpmet)
(H2O)(OH)]n (1) has been prepared (Scheme 2) and char-
acterized by elemental analysis, FT-IR, UV–Vis, NMR 

spectroscopic measurements along with and single-crystal 
X-ray diffraction study. Here, DFT study was carried out 
to find out HOMO–LUMO energy gap, MEP surface and 
topology whereas Hirshfeld surface (HS) study further 
analyzed the packing interactions. In addition, complex 1 
was investigated for its antibacterial efficacy toward Gram-
positive and Gram-negative strains and molecular docking 
study was carried out to find out the antibacterial potency 
of the complex 1 toward protein molecules.

Experimental section

Materials

Cu(NO3)2·3H2O and NaOH were purchased from E 
Merck, India and DMSO was obtained from SRL. 2-Ami-
noterephthalic acid and salicylaldehyde were purchased 
from Sigma-Aldrich. All solvents and reagents were of 
reagent grade and were used as received without further 
purification.

OH

C

H

O + H2N

COOH

COOH

Refluxed for

2 hours

OH

C

H

N

COOH

COOH

Scheme 1   Synthetic scheme of 2-[(E)-(2-hydroxyphenyl)methylenea-
mino]terephthalic acid [H3hpmet]
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Physical measurements

The infrared spectrum of complex 1 was recorded on a Per-
kin–Elmer SPECTRUM 2 FT-IR spectrophotometer with 
KBr disks (4000–400 cm−1). An electronic spectrum of com-
plex 1 was recorded at 300 K on a Perkin-Elmer Lambda-35 
UV–Vis spectrophotometer in DMSO medium. Elemental 
analyses (C, H, N) were carried out using a Perkin–Elmer 
2400 II elemental analyzer.

1H and 13C NMR spectra of ligand (HL) were recorded 
in a Bruker 400 MHz instrument using TMS as an internal 
standard. EDX was performed by using a W filament on 
the OXFORD XMX N model. High-resolution SEM images 
were analyzed with the JEOL model JSM-6390LV.

Synthesis

Synthesis of the ligand [H3hpmet]

2-Aminoterephthalic acid (5 mmol, 0.906 g) and salicylal-
dehyde (5 mmol, 0.610 g) were taken in 25 mL methanol. 
The yellow colored reaction mixture was heated under reflux 
condition for 2 h. Within 30 min of heating, the mixture 
turned deep orange. After reflux, the orange reaction mix-
ture was cooled to room temperature. 1H NMR (DMSO-d6, 

400 MHz, 25 °C), d (ppm): 3.43 (1H, s), 7.52 (1H, d), 7.48 
(1H, t), 6.91 (1H, t), 7.50 (1H, d), 7.83 (1H, s), 7.28 (1H, s), 
10.25 (1H, s), 7.50 (1H, d), 7.02 (1H, d), 9.85 (1H, s). (Figs. 
S3A and S3B, Supplementary information).

13C NMR (CDCl3, ppm): 161.15 (C1), 151.60 (C2), 
115.22 (C3), 113.14 (C4), 136.90 (C5), 135.66 (C6), 169.51 
(C7), 192.37 (C8), 122.72 (C9), 167.56 (C10), 117.68 (C11), 
131.88 (C12), 118.00 (C13), 129.82 (C14), 119.97 (C15). 
(Fig. S4A and B, Supplementary information).

Schematic diagram of ligand mentioning the number of 
carbon atoms.

Synthesis of the complex [CuNa(Hhpmet)(H2O)(OH)]n (1)

Cu(NO3)2·3H2O (0.241 g, 1 mmol) and the ligand H3hpmet 
were dissolved in 20 mL of methanol. The reaction mixture 
was refluxed for 1 h resulting in a green precipitate along 
with a green colored solution, which was further treated with 
2 mmol of NaOH (0.4 g) dissolved in a few drops of water 
and stirred for 2 h at room temperature. After that, the mix-
ture was filtered and the filtrate was left to evaporate. Blue 
block-shaped single crystals suitable for single-crystal X-ray 
diffraction analysis were obtained after 2 weeks.

Yield:  0.293  g (71%). Anal.  Calc (%) for 
C15H12Cu1N1Na1O7: C, 44.47; H, 2.96; N, 3.46. Found: C, 
44.72; H, 2.93; N, 3.41%.

Fourier transform infrared (FT-IR) (KBr, cm−1): 3436(b), 
3018(s), 2530(b), 1608(s), 1576(m), 1504(s), 1467(s), 
1437(m), 1369(s), 1311(s), 1214(m), 1024(m), 850(s), 
819(m), 770(s), 756(s), 690(s), 527(w), 510(w), 489(m), 
464(m).

X‑ray crystallography

A single crystal of complex 1 was mounted on a Bruker 
APEX-II CCD diffractometer equipped with graphite 
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monochromatized Mo Kα (λ = 0.71069 Å) fine-focus sealed 
tube. Intensity data were collected at 292(2) using ω scans. 
Crystal data were collected using APEX2. Data refine-
ment and reduction were performed using SAINT (Bruker 
2008) [71] software. Multi-scan absorption corrections were 
applied empirically to the intensity values using SADABS 
[71]. The structures were solved by direct methods using 
the program SIR97 [72] (Altomare et al. 1999), and refined 
with full-matrix least-squares based on F2 using program 
SHELXL-2019/3 (Sheldrick 2015) [73]. All non-hydrogen 
atoms were refined anisotropically. H atoms attached to car-
bon atoms were positioned geometrically (C–H = 0.93 Å) 
and refined in the riding-model approximation, with 
C‒H = 0.82–0.93 Å and with Uiso(H) = 1.2Ueqv(C). A rotat-
ing model was used for the O5 and O6 hydroxyl groups. 
The water molecule is disordered over two orientations with 
refined site occupancy factors of 0.74(3):0.26(3). The dis-
placement ellipsoids of the disordered oxygen atom were 
restrained to be equal and nearly isotropic. The Na1‒Owater 
distances were also restrained to be similar. The water H 
atoms were placed in chemically sensible positions on 
the basis of plausible hydrogen bonds [O–H = 0.86(1) 
Å, H···H = 1.36(2) Å] and allowed to ride on the oxygen 
atom with Uiso(H) = 1.5Ueqv(O). The molecular graphics 
and crystallographic illustrations complex were prepared 
using CAMERON [74], PLATON [75], DIAMOND [76], 
POV-RAY [77] and OLEX2 [78] programs. All the relevant 
crystallographic data and structure refinement parameters 
complex 1 are summarized in Table 1.

Hirshfeld surface

There are points on the Hirshfeld surface which indicate half 
or more of the electron density available from the atoms of 
this molecule [79, 80].

Hirshfeld surface plots and 2D fingerprint plots [79–83] 
were computed using CRYSTAL EXPLORER 3.1 [80]. In 
this study, the Hirshfeld surface has been mapped over nor-
malized contact distances (dnorm). In terms of de versus di, we 
presented the shape index and decomposed fingerprint plot. 
The dnorm, expressed as 

(

d
i
− r

vdw

i

)/

r
vdw

i
+

(

d
e
− r

vdw

e

)/

r
vdw

e
 ; 

where rvdw
i

and r
vdw

e
 are the van der Waals radii of the atoms, 

indicates the regions having the ability to intermolecular 
interactions. In a crystal structure, a supramolecular structure 
results from the extended form of close three-dimensional 
contacts. The surface map was calculated within Crystal 
Explorer via TONTO using the B3LYP/6–311G(d,p) ± 0.03 
a.u. method.

DFT study

Using hybrid functional B3LYP with mixed basis sets 
6-31++G(d,p)/LANL2DZ, DFT calculations were carried 

out on 1 (in isolated form). Gaussian 09 and the molecular 
visualization software Gauss-View 5 were utilized for DFT 
[84, 85]. In the framework of DFT, the spin-unrestricted 
scheme was employed because the complex has odd elec-
trons (one unpaired electron). The X-ray refinement struc-
ture was used as the starting geometry for geometry optimi-
zation calculations. To understand the reactive nature of the 
present complex, frontier molecular orbitals (FMOs) were 
also presented. The same level of theory was applied to the 
MEP calculations.

Topology analysis

To analyze crystal topology, the Topos Pro software package 
was applied along with the TTD collection of periodic net-
work topologies [86] The RCSR three-letter codes identifies 
complex network topologies. The Topos NDn nomenclature 
is used for network types not covered by the RCSR designa-
tion methodology [87]. The N represents the sequence of 
coordination numbers for all non-equivalent nodes in the 
net; the D represents its periodicity (M, C, L, and T for 0-, 1-, 
2-, and 3-periodic nets, respectively); and the n represents 
the ordinal number of this net among all non-isomorphic 
nets [88].

Table 1   Crystallographic data and structural refinement of complex 1 

a R1 = Σ||Fo|-|Fc||/Σ|Fo|, bwR2 = {Σ[w(Fo
2–Fc

2)2]/Σ[w(Fo
2)2]}0.5

1

Empirical formula C15H12Cu1N1Na1O7

Formula weight (g mol−1) 404.79
Temperature 292(2)
Crystal system Monoclinic
Space group P21/n
a (Å) 9.6485(6)
b (Å) 7.4432(5)
c (Å) 21.7954(13)
β (deg) 90.9630(9)
V (Å3) 1565.03(17)
Z 4
dcalc (g cm−3) 1.718
μ (mm−1) 1.463
F (000) 820
Crystal size (mm3) 0.12 × 0.14 × 0.16
θ range (deg) 1.87 − 25.25
Measured reflections 14957
Independent reflections 2837
R(int) 0.029
Goodness-of-fit on F2 1.059
Final R indices[I > 2σ(I)] R1

a = 0.0395, wR2
b = 0.1116

R indices (all data) R1
a = 0.0458, wR2

b = 0.1170
Δρmin and Δρmax(e Å−3) − 0.67 and 0.57
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Antimicrobial assay

Nutrient agar plates were prepared and sterilized. Bacte-
rial cells were grown overnight in liquid nutrient agar 
medium. On the next day 0.1 ml of the overnight bacterial 
culture was put on the surface of agar and spread evenly 
with the help of a spreader. Wells were made diameter 
of the bore adjusted so as to contain 50 µl of sample) 
with curk borers and agar pieces safely discarded. 50 µl 
of each sample was into each well poured with the help 
of a micropipette. The samples were diluted to desired 
concentrations of l mg/ml and 5 mg/ml.

Plates were kept at 4 °C to initiate uniform diffusion. 
Plates were incubated at 37 °C overnight without invert-
ing. The next day zones were observed and the diameters 
recorded in Table 2.

Organisms used in this experiment are two kinds of 
bacteria.

Gram Positive—(a) Bacillus subtilis, (b) Staphylococ-
cus aureus.

Gram negative—(a) Escherichia coli, (b) Klebsiella 
aerogenes.

The minimal inhibitory concentration of complex 1 
against bacteria

The minimum inhibitory concentration (MIC) to kill 
bacterial population (99%) against the bacterial strain 
with complex 1 was determined using standard method. 
Overnight bacterial culture of Gram + Ve and Gram − Ve 
bacteria were used for the experiment.

One tube is considered as positive control (with inoc-
ulum) and another is negative control (no inoculum). 
Inoculum of Escherichia coli was added to the 2X NB 
prior to distribution of the broth in each test tube. After 
distribution contents of the each tube mixed properly and 
were incubated at 37 °C for 24 h. Results were recorded 
the next day and are represented in Table 3. From the 
results, MIC of the bacteria against complex 1 was cal-
culated in μg/ml.

Molecular docking study

The energy-minimized structure of the complex was used 
for the molecular docking. The process involved creating 
pdbqt files and assigning partial charges to both molecules 
and proteins was performed using AutoDock Tools (ADT). 
These structures were then used in docking simulations with 
AutoDock 4.2, following the standard docking protocol out-
lined in the AutoDock 4.2 manual. We established sizable 
3D grids with dimensions of 40 × 40 × 40 Å (X, Y, Z) and a 
grid spacing of 1 Å to encompass all binding sites, custom-
izing the grid box coordinates based on the protein. The 
docking calculations were carried out using AutoDock 4.2 
with the Lamarckian genetic algorithm, and the visualiza-
tion of the docking results was achieved using Pymol with 
Schrödinger Release 2023.

Results and discussion

Syntheses

We mostly intended to synthesize a Na(I)/Cu(II) heterome-
tallic coordination complex using a tridentate ONO donor 
Schiff base ligand. Our purpose was to explore the structural 
variations acquired by the ligand and the complex in pres-
ence of the carboxylate groups of the ligand.

Generally, Salen or Valen type of Schiff Base ligands 
upon reaction with copper salt form square pyramidal or 
square-planar complexes [89, 90]. When Na(I) is incorpo-
rated in the structure, the geometry of Cu(II) changes from 
square pyramidal to square planar and the hard metal centers 
acquire an octahedral geometry [91–93]. It is worth men-
tioning here that being a non-compartmental ligand, usually 
in the presence of a sodium salt, salen-type ligands form 
trinuclear Cu(II)–Na(I)–Cu(II) systems [91, 93]. But, inter-
estingly in this case due to presence of the carboxylic groups 
together with a bridging hydroxyl group we obtain a 3D 
structure, where the Cu(II) ion acquires the square pyrami-
dal and Na(I) the tetrahedral geometry. Unexpectedly, the 
solvent molecule does not play any part in the self-assembly 
apart from barely satisfying a secondary valency of the Na(I) 
ion.

Table 2   Mean zone diameter for compound 1 

[Each value represents a mean ± standard deviation (SD) of three 
measurements. aThe zone diameter have been calculated (mm).]

Mean zone diameter (mm)a

E. coli K. aerogenes B. subtilis S. aureus

Complex 1 19 ± 0.4 10 ± 0.1 14 ± 0.3 18 ± 0.2
DMSO – – – –

Table 3   Minimum inhibitory concentration (MIC) (μg/ml) values of 
complex 1 against microbes

Sample MIC (μg/ml)

Gram − ve bacteria Gram + ve bacteria

E. coli K. aerogenes B. subtilis S. aureus

Complex 1 11.25 11.25 11.25 11.25
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Infrared spectral study

Infrared spectrum of complex 1 was recorded in the region 
4000–400  cm−1 (Fig. S1). Complex 1 showed (C=N) 
stretching frequency at 1608 cm−1 due to the presence of 
the deprotonated coordinated ligand [94]. For complex 1, a 
broad peak was observed at 3436 cm−1 which stands for the 
ν(O–H). Another two peaks appeared at 527 and 464 cm−1 
which can be assigned to (M–O) and (M–N) stretching 
frequency, respectively [95]. The significant vibrations of 
the benzene ring skeleton in 1 was observed in the region 
1437–1467 cm−1 [96]. Complex 1 displayed νassym (COO−) 
peak at 1576 cm−1 and νsym (COO−) peak at 1332 cm−1. 
The difference ∆ν = νassym − νsym is 244 cm−1, which clearly 
indicate the monodentate nature of the bridging acetate 
[97–100]. Infrared stretching frequency near 3018 cm−1 was 
observed for the C–H group [97].

Electronic spectral study

The UV–Vis absorption spectrum of complex 1 in DMSO 
was recorded in the region 200–800 nm (Fig. S2). The spec-
trum showed band at 270 nm corresponding to intraligand 
π → π* transition of the coordinated imines [95]. Complex 
1 displayed a shoulder band at 382 nm and 372 nm which 
can be attributed to n → π* transitions [101, 102]. The low-
intensity band observed at 662 nm can be attributed to d → d 
transition [101, 102].

Description of crystal structure of complex 1

Single-crystal X-ray analysis reveals that complex 1 crys-
tallizes in the monoclinic space group P21/n. An ORTEP 
view of complex 1 with atom numbering scheme is shown 
in Fig. 1.

The hydrogen atom of the oxygen at the apical position of 
the pyramid about the Cu atom was evident in the difference 
Fourier map, while the H atoms of the phenol ring and dis-
ordered water molecule were not; it is therefore we assume 
that the O6 atom is in fact an hydroxy group and that the O5 
phenolic oxygen is protonated. Moreover, all H atoms of the 
disordered water molecule were calculated on the basis of 
plausible H-contacts.

Crystallographic data and structural refinement of com-
plex 1 and selected bond lengths and bond angles are sum-
marized in Table T2 (Supplementary information).

The fundamental building unit of complex 1 contains 
one copper(II) metal ion, one ligand moiety hpmet2−, one 
hydroxide group, a sodium(I) atom and a terminal water mol-
ecule. The copper center adopts a distorted square pyramidal 
geometry with two different ligands and the hydroxide group 
in which the copper(II) ion is located 0.2437(4)Å above the 
N2O2 basal plane (r.m.s. deviation = 0.0206 Å). In this case, 

it is worth mentioning that, for penta-coordinated Cu(II) 
complexes, geometry can exist in three different forms. For 
instance square pyramid (SQP), trigonal bipyramid (TBP) 
and intermediate between SQP and TBP. The SQP geometry 
can easily be changed into TBP geometry by simple bonds 
rotation, as the dx

2 − y2 electronic ground state is expected in 
SQP, whereas the dz

2 electronic ground state is anticipated 
in TBP (Scheme 3).

In real systems, ideal geometries are hardly ever achieved. 
The electronic effect (electron donating or withdrawing) of 
substituents could be an imperative factor that may tune 
ligand field strength and selectively favor dx

2 − y2or dz
2 

ground state in Cu(II) center. The copper(II) ion in complex 
1 deviate slightly from the ideal SQP geometry with Addi-
tion parameter [103] τ = 0.018. The ligands are bonded to the 
copper atom through N1, O1, O5, O4i and O6. The hydroxo 
oxygen atom (O6) is situated at the apical position of the 
pyramid and the rest of the atoms (N1, O1, O5 and O4i; 

Fig. 1   The asymmetric unit of 1 with displacement elllipsoids drawn 
at the 50% probability level. Only the A component of the disor-
dered water molecule is shown. Symmetry codes: (i) 1 + x, y, z; (ii) 
x, − 1 + y, z; (iii) 1 − x, − y, − z

Scheme 3   Distortion in SQP geometry
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i = 1 + x, y, z) form the basal plane. N1 is the imine nitrogen 
atom and O1 and O4i are oxygen atoms from the carboxylate 
group ortho to the imino group. Among these set of atoms 
N1, O1 and O5 belong to same ligand moiety, whereas O4i 
comes from a symmetry-related ligand and, due to presence 
of two carboxylate groups placed para to each other, the 
ligand thus acts as a bridging ligand. Within the carboxy-
late groups, it should be noted that the C7–O2 and C8–O4 
bonds (mean value 1.239(8) Å) show a remarkable double 
bond character, indicating that the negative charges should 
be localized on the O1 and O3 oxygen atoms (the mean 
value of the C7–O1 and C7–O3 bond lengths is 1.289(10) 
Å). The Cu–O1 (1.922(2) Å) and Cu–N1 (1.959(2) Å) bond 
lengths compare well with those reported in the literature 
for ligands featuring a μ-carboxyphenylsalicylideniminato 
moiety (mean values: 1.932 and 1.968 Å, respectively, calcu-
lated over 34 entries in the CSD database). The mean value 
of the Cu–O bond lengths involving the neutrally charged 
hydroxyl (O5) and carboxylate (O4i) atoms is 2.00(7) Å.

The angles subtended the Cu atom ranges from 84.00(8)° 
to 165.77(10)°. The two six-membered chelate rings adopt 
an approximate twist-boat conformation, with puckering 
parameters Q = 0.390(2) Å, θ2 = 65.7(4)°, φ2 = − 34.2(4)° 
for Cu1/O1/C7/C1/C2/N1 and Q = 0.412(2) Å, θ = 59.6(4)°, 
φ = 21.4(4)° for Cu1/O5/C10/C9/C15/N1.

The coordination geometry around Na(I) can be described 
as a tetrahedral geometry as it is evident from the bond 
angles around the sodium atom shown in Table  2. The 
coordination sites are being defined by four oxygen atoms, 
namely O1, O2, O6 and O7. O1 and O2 are carboxylato 
oxygen atoms belonging to different ligands and O6 is the 
hydroxo oxygen atom a μ2-bridging the copper and sodium 
atoms. O7 comes from the terminal water molecule. The 
ligand displays two types of coordination mode, that is μ3-
bridging with one carboxylate group in a μ2-η2:η1 chelating 
bridging mode connecting two sodium(I) and a copper(II) 
atom or in a monodentate mode. The separation of two 
Cu(II) ions bridged by the same ligand is 9.6485(7) Å. Such 
a μ2-η2:η1 chelating bridging mode (syn–syn with respect to 
sodium atom and syn-anti with respect to sodium and copper 
atom) of the carboxylate group leads to the formation of a 
binuclear unit with a Na1···Na1 distance of 4.112(6) Å. As 
a consequence, the adjacent binuclear units are connected 
alternatively via the hydroxide group to afford a cyclic tetra-
nuclear motif. These tetranuclear motifs are further extended 
to form a 1D chain along the c axis and the adjacent 1D 
strand are further connected via Cu1 atom to form the 2D 
sheet (Fig. 2a). A close insight into the structure reveals 
that two 2D sheets are arranged to form a layered structure 
which produces a small void in the cluster (Fig. 2b). The 
water molecule along with the phenoxo and hydroxo group 
present in the ligand shows strong intra- and intermolecular 
hydrogen bond with the carboxylate groups. The hydrogen 

bonds may be categorized as both classical O‒H···O type 
and nonclassical C‒H···O type along with π‒π interactions 
(Fig. 2c) with a separation of 3.7538(12) Å between the 
aromatic rings. Details of the pattern of hydrogen bonds are 
given in Table S1.

SEM–EDX analysis

The SEM micrograph of the Schiff base and the complex 
1 (Figs. S5 and S6, respectively, Supplementary informa-
tion) explored the surface morphology. The SEM image of 
the Schiff base shows ice-like morphology, similar to what 
has been reported in the literature [61, 62]. The surface of 
the complex 1 shows flakes like overlapping sheets spread 
throughout the micrographs establishing the sample’s homo-
geneity. Elemental composition of the Schiff base and the 
metal complex are explored by using EDX profile (Fig. S7 
for Schiff base and Fig. S8 for complex 1) [61, 62, 64]. In the 
EDX profile, the Schiff base (Fig. S7) shows the presence of 
carbon (C), oxygen (O), nitrogen (N) whereas the complex 
1 comprises of carbon (C), oxygen (O), nitrogen (N), cop-
per (Cu) and sodium (Na) metal ions (Fig. S8) confirming 
the formation of metal–ligand complex. The EDX profile 
confirms the interaction among Cu(II), Na(I) and Schiff base 
ligand [61, 62, 64].

Hirshfeld surface (HS) analysis

In the graphic below (Fig. 3), two adjacent interacting mol-
ecules are shown in their relative position over dnorm. The 
dnorm HS surface uses color coding, which is blue, white, 
and red. These colors indicate how far apart two neighbor-
ing atoms are from each other based on their respective van 
der Waals radii. Therefore, in the case of red spots, van der 
Waals radii can be approximated with significant accuracy 
for atoms involved in non-covalent interactions [79, 80].

Seventeen bright red spots having different size were 
found over dnorm surface of the complex (Fig. 3a) which 
may form H-bonding interactions with adjacent molecu-
lar fragments. The blue regions on the same surface also 
show the available surface for other type of strong non-
covalent interactions. The three-dimensional di surface of 
the 2D coordination polymer is demonstrated in Fig. 3b. In 
the shape-index surface of the complex (Fig. 3c), there are 
triangle shaped red and blue sports placed side-by-side. It 
indicates that these regions are capable of the formation of 
π–π stacking interactions between two adjacent molecules. 
On the HS, the curvedness provides the understanding of 
the coordination number in the crystal. The curvedness of 
HS (Fig. 3d) is very sharp in the Na+ ion containing regions 
of the complex whereas it is less prominent over aromatic 
regions. The surface indicates that the Na+ ion may form 
more non-covalent interactions with other neighboring 
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Fig. 2   a Packing diagram of 1 approximately viewed down the a axis. Hydrogen atoms and the B component of the disordered water molecule 
are omitted for clarity. b Voids in the cluster of 1. c The hydrogen bonds (green dotted line) along with π‒π (brown dotted line) interactions in 1 
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atoms. All types of non-covalent interactions present in the 
molecules can be identified and measured quantitatively 
with the help of di vs de fingerprint plots.

The fingerprint plot of de against di shows strong intermo-
lecular non-covalent interactions present in the network of 
the molecules in the crystal (Fig. 4a). It is interesting to note 
that the O···H interactions are 29.6% of the total interaction 
which is the highest. Therefore, strong O···H interactions 
(de = di < 1 Å) may be the driving force and the key compo-
nent for the crystal formation which is evident from the two 
sharp spikes in Fig. 4b. After this, C···H contacts are most 
important in the crystal formation which is 19% of the all 
non-covalent interactions (Fig. 4c). The extent of van der 
Waals H···H contacts in the crystal network is very close to 
the C···H contacts totaling 18.9% of the total contacts with 
de + di = 1.9 Å (Fig. 4d). The Na···O interactions are enough 
strong since de = di = 1.4 Å and 9.9% of the total interaction 
in the crystal (Fig. 4e). However, the C···C interaction in 
the crystal is strong and concentrated in a very tight region 

depicted by the cyan color patch in Fig. 4f. It was found to be 
6.7% of the all type of contacts. Therefore, the HS analysis 
shows that the asymmetric unit of the polymer is mainly 
amphiphilic which will make it available to interact with 
diverse types of molecules.

Density functional theory

To understand the chemical reactivity of a compound, 
density functional theory can be used [81, 82]. The filled 
molecular orbital having highest energy (HOMO) is the 
most important orbital because it is involved when the mol-
ecule reacts with another molecule through electron dona-
tion. However, the molecule can behave as electrophile if 
can accept electron from an adjacent molecule at the lowest 
energy unoccupied molecular orbital (LUMO). Therefore, 
a small gap between HOMO and LUMO actually indicates 
high reactivity of the complex. In 1, the energy gap is only 
2.81 eV (Fig. 5). It is interesting to notice the presence of 

Fig. 3   a dnorm, b di, c shape-
index and d curvedness Hirsh-
feld surface of an asymmetric 
unit of complex 1 
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electron density over the metal ion in both HOMO and 
LUMO. It indicates that, in chemical reactivity, the com-
plex have active participation through the metal ion. The 
HOMO is distributed almost all over the molecule whereas 
the LUMO concentrated more over the 2-aminobenzoic acid 
part.

A molecular electrostatic potential (MEP) map has also 
been calculated to get more structural information. The 
color coding of the MEP indicates the electron density 

around the molecule. The red and yellow regions on the 
surface demonstrate more and moderate electron density, 
respectively, and the blue region shows the electron-
deficient atoms. In this case, the yellow region was found 
to be on nitro and carboxylic acid groups which indicate 
they can form the H-bond as H-bond acceptor. In contrast, 
the blue regions are associated with the phenolic OH and 
water OH groups, confirming their role as hydrogen bond 
donors. This suggests that the molecule can effectively 

Fig. 4   The di versus de fingerprint plots a all, b O···H, c C···H, d H···H, e Na···O and f C···C interactions present in the network of the crystal

Fig. 5   a HOMO–LUMO energy 
gap and b molecular electro-
static map (MEP) of complex 1 
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engage in hydrogen bonding interactions with other mol-
ecules. Moreover, this finding is further supported by the 
form Hirshfeld surface analysis, which reveals that 29.6% 
of total interactions are indeed hydrogen bonds within the 
crystal structure. The expansive green areas of the mol-
ecule underscore its significant π-interaction capability in 
the aromatic region. This conclusion is reinforced by the 
HS results, showing 19% C…H interactions, 18.9% H…H 
interactions, and 6.7% C…C interactions. Overall, the 
molecule demonstrates clear amphiphilic properties, ena-
bling it to interact with a diverse range of other molecules.

Topology

Generally, coordination polymers consist of rigid ligands 
rather than a predictable topology resulting from the for-
mation of strategic coordination complexes. Depending 
on metal ion geometry, ligand conformational flexibility, 
and functional groups, these can vary creating a molecular 
network with unpredictable topology and properties. In 
this complex, due to the involvement of the Na+ ion in the 
coordination with an acid group, the complex has very 
complex crystal structure.

Using the centers of mass of ligands and/or groups on 
these molecules, we simplified the structure to identify the 
topology. In this study, a zig-zag-like 1D chain topology is 
found in the network that resembles the polymeric network 
of the Cu and Na complexes (Fig. 6). Considering all the 
covalent and ionic compounds, the coordination polymeric 
compound in the solid state have an unknown topology 
3^6, 4-c net]. The molecules have created a valence-
bonded MOFs like topology with symbol 3, 3, 4L34.

Antimicrobial study

Zone diameter calculation

The zone diameter of the copper complex 1 was ana-
lyzed against two Gram positive and two Gram-negative 
bacteria.

Gram Positive—Bacillus subtilis and Staphylococcus 
aureus.

Gram negative—Escherichia coli and Klebsiella 
aerogenes.

The mean values of zone diameters are recorded in 
Table 2.

The compound showed very good activity against the 
chosen microbes and the order of reactivity was E. coli > S. 
aureus > B. subtilis > K. aerogenes.

The antimicrobial property showed by the complex is 
more or less close to the standard drugs (Given in Table 2).

MIC calculation

The complex 1 showed good antimicrobial activity against 
both Gram + ve and Gram –ve bacteria. Table 3 summa-
rizes the MIC values of complex 1. The complex had a 
value 11.25 μg/ml against all the selected microbes.

From the zone of inhibition and MIC values (11.25 μg/
ml), it is evident that complex 1 showed very similar activ-
ity against a broad range of bacteria. It might be due to 
the fact that toxicity is increased due to the chelation of 
the Schiff base ligand with copper and the same can be 
explained by Tweedy’s chelation theory [104, 105]. The 
polarity of the metal center is now lower due to coordi-
nation with ligands which ultimately increases the lipo-
philicity of the central metal atom. This fact in generally 
favors permeation through the lipid layer of microorgan-
ism leading to destroy them more efficiently [104]. The 

Fig. 6   Topology of the complex 1 in the solid state
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antimicrobial activity of the complex 1 was more or less 
comparable with reported Cu(II) complexes [105–108].

Molecular docking study

Utilizing the optimized structure (as shown in Fig.  5), 
Molecular Docking (MD) calculations can provide valu-
able insights into the biological activities of molecules. 
It is widely acknowledged that various types of chemical 
interactions can contribute to the enhancement of molec-
ular activity. Compounds with the most negative binding 
energy values typically exhibit the highest activity levels. 
The complex was tested with various bacteria including 
Escherichia coli, Klebsiella aerogenes, Bacillus subtilis, 
and Staphylococcus aureus for antibacterial study. To ration-
alize this testing, we have chosen one virulent protein of 
each bacterium and molecular docking was performed. The 
study shows that the complex can bind at the tight pocket 
of the multidrug transport protein (Fig. 7a) AcrB (1t9u) of 
Escherichia coli, a multidrug efflux pump, with a binding 
energy of − 7.27 kcal/mol. It can interact with A33, Y35, 
P36, T37, A39, and A299 residues of the protein by con-
ventional, non-conventional H-bond (with NO2 group), and 
hydrophobic interactions (Fig. 7b). On the protein surface of 
oxygen-dependent coproporphyrinogen-III oxidase (hemf) 
from Klebsiella aerogenes (8t7w) can also interact with the 
Cu-complex (Fig. 7c) and the binding energy was found 
to be − 5.88 kcal/mol. In this case, the nitro group and the 
metal-attached water molecules are involved in the H-bond 
with R50, Q57, M268, P269, and P270 residues of the 

protein. E262 residue was involved in the π…anion interac-
tions (Fig. 7d). Again, the complex has the capability to bind 
with the primary wall teichoic acid ligase protein (6UF6) of 
Bacillus subtilis (Fig. 7e) with binding energy − 6.28 kcal/
mol. Here, it prefers a surface-binding pocket and interacts 
with D107, D119, K120, I283, Y284, and Y285 through 
H-bond (nitro group and water of the complex) and π-staking 
interactions (Fig. 7f). The SdrD protein (4jdz) from Staphy-
lococcus aureus is located on the cell surface as receptors to 
identify their ligands during infection. The compound binds 
at this ligand-binding site through H-bond (nitro group and 
water of the complex) and π-staking interactions (Fig. 7g) 
with K209, D307, G346, and K562 residues of the protein 
(Fig. 7h). Through MEP and HS analysis, we understood 
that the nitro group and water in the complex are poised for 
interactions, acting as H-bond acceptors and donors, respec-
tively. Additionally, the aromatic rings are well-suited for 
π-stacking interactions. This finding was also confirmed in 
the docking study. Therefore, the molecule can interact with 
various protein molecules and inhibit their normal functions 
through H-bond and π-staking interactions.

Conclusion

In summary, the present article describes the synthesis, mod-
ern spectroscopic findings along with single-crystal struc-
ture analysis of one 3D-coordination polymer of copper(II) 
and sodium(I) [CuNa(Hhpmet)(H2O)(OH)]n. EDX-SEM 
was utilized to examine the elemental composition and 

Fig. 7   Docking pose of the Cu-complex with a multidrug transport 
protein, and b its different non-covalent interactions with the protein; 
with c oxygen-dependent coproporphyrinogen-III oxidase (hemf) 
from Klebsiella aerogenes, and d its different non-covalent interac-

tions with the protein; with e primary wall teichoic acid ligase pro-
tein, and f its different non-covalent interactions with the protein; 
with g SdrD protein, and h its different non-covalent interactions with 
the protein
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morphological difference between the Schiff base and the 
complex. DFT calculations optimized the molecular geom-
etry of the compound in gas phase. HOMO–LUMO energy 
gap is 2.81 V which is responsible for the high reactivity of 
the complex. Non-covalent interaction is present in the solid 
state between N–H (18.9%) and O–H (29.6%) contact and 
depicted from Hirshfeld surface and 2-D fingerprint plot. 
The complex was found to act as good antimicrobial agent 
with MIC value 11.25 µg/ml. In-depth in-silico molecular 
docking study against Gm + ve and Gm –ve bacteria’s dem-
onstrated the correlation and support the wide-range anti-
microbial property of the synthesized complex. Finally, the 
goal of the study is that the synthesized complex may find 
its place as promising drug as well as antimicrobial agent.
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