B(3rd Sm.)-Mathematics-H/CC-7/CBCS

2024

MATHEMATICS — HONOURS

Paper : CC-7

(ODE and Multivariate Calculus – I)

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

ℝ denotes the set of real numbers.

Group - A

(Marks : 20)

- Answer the following multiple-choice questions with only one correct option. Choose the correct option and justify: (1+1)×10
 - (a) The equation of the integral curve through the point (2, 3) corresponding to the differential equation
 - $\frac{dy}{dx} = \frac{y}{x}$ is (i) 3y = 2x (ii) 2y = 3x(iii) y = 3x (iv) None of these.
 - (b) An integrating factor of the differential equation $(x^2y 2xy^2)dx (x^3 3x^2y)dy = 0$ is

(i)
$$\frac{1}{xy}$$
 (ii) $\frac{1}{x^2 + y^2}$
(iii) $\frac{1}{x^2y^2}$ (iv) $\frac{1}{x^2 - y^2}$.

(c) Which of the following differential equations is linear?

(i)
$$5\frac{dy}{dx} + x\sqrt{y} = 5e^{4x}$$

(ii) $\frac{dy}{dx} + 5x^2 \tan y = x$
(iii) $e^x \frac{dy}{dx} + y = e^{-x}$
(iv) $y\frac{dy}{dx} + 5xy = \log_e x$

- (d) The Wronskian of the functions $y_1 = e^x \sin x$ and $y_2 = e^x \cos x$ is
 - (i) 0 (ii) $e^x \cos x$
 - (iii) $e^x \sin x$ (iv) $-e^{2x}$.

Please Turn Over

(1385)

[B(3rd Sm.)-Mathematics-H/CC-7/CBCS]

(e) The singular solution of the equation $p^2 + xp - y = 0$ is

(i)
$$y^2 = 4x$$

(ii) $x^2 = -4y$
(iv) $xy = 4$.

(f) Which of the following is correct for the linear differential equation

$$(3x+1)x\frac{d^2y}{dx^2} - (x+1)\frac{dy}{dx} + 3y = 0$$
?

- (i) 0 is an irregular singular point
- (ii) -1 is an irregular singular point
- (iv) no irregular singular point.

(g) The value of
$$\lim_{(x,y)\to(0,0)} \frac{x\sin(x^2+y^2)}{x^2+y^2}$$
 is

(iii) -1 is a regular singular point

- (i) 1 (ii) -1
- (iii) 0 (iv) does not exist.
- (h) The unit normal to the surface $x^2 + y^2 = z$ at point (1, 2, 5) is

(i)
$$\frac{2}{\sqrt{21}}\overline{i} - \frac{4}{\sqrt{21}}\overline{j} - \frac{\overline{k}}{\sqrt{21}}$$

(ii) $\frac{-2}{\sqrt{21}}\overline{i} + \frac{4}{\sqrt{21}}\overline{j} - \frac{\overline{k}}{\sqrt{21}}$
(iii) $\frac{2}{\sqrt{21}}\overline{i} + \frac{4}{\sqrt{21}}\overline{j} - \frac{\overline{k}}{\sqrt{21}}$
(iv) $\frac{2}{\sqrt{21}}\overline{i} + \frac{4}{\sqrt{21}}\overline{j} - \frac{\overline{k}}{\sqrt{21}}$

(i) If
$$z = \frac{x+y}{x-y}$$
, $x \neq y$, the value of $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$ is

(i)
$$2\frac{x+y}{x-y}$$
 (ii) $2\frac{x+y}{(x-y)^2}$

(iii)
$$\frac{2}{x-y}$$
 (iv) $\frac{-2}{x-y}$

(j) For the function $f(x, y) = x^2 - y^3 - x^2y + y$, the point $\left(0, \frac{1}{\sqrt{3}}\right)$ is

- (i) not a critical point (ii) a saddle point
- (iii) a point of local minimum (iv) a point of local maximum.

B(3rd Sm.)-Mathematics-H/CC-7/CBCS

(3)

Group - B

(Marks : 30)

Answer any six questions.

2. (a) State the existence and uniqueness theorem for the initial value problem $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$.

(b) Solve the equation
$$\frac{dy}{dx} = \sin(x+y) + \cos(x+y)$$
. 2+3

3. Find the value of the constant λ for which the differential equation $(2xe^y + 3y^2)\frac{dy}{dx} + (3x^2 + \lambda e^y) = 0$ is exact. Hence solve the equation.

4. Solve:
$$x^2 y - x^3 \frac{dy}{dx} y = y^4 \cos x$$
. 5

- 5. Reduce the equation $y^2(y xp) = x^4p^2$ to Clairaut's form by the substitution $x = \frac{1}{u}$, $y = \frac{1}{v}$ and hence solve it. Find the singular solution, if it exists.
- 6. Find the solution of the differential equation $(D^2 2D + 1)y = xe^x \left(D \equiv \frac{d}{dx}\right)$ by the method of variation of parameters. 5
- 7. Solve the differential equation $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 4y = 8x^2 + 3 + 2\cos 2x$ by the method of undetermined coefficients.
- 8. Find the general solution of the following Euler-Cauchy differential equation :

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^2 e^x$$
5

9. Find x and y from the system of equations :

$$\frac{dx}{dt} + 4x + 3y = t$$

$$\frac{dy}{dt} + 2x + 5y = e^{t}$$
5

Please Turn Over

(1385)

B(3rd Sm.)-Mathematics-H/CC-7/CBCS

10. Determine the nature and stability of the critical point (0, 0) of the following system :

$$\frac{dx}{dt} = 3x + 2y$$
$$\frac{dy}{dt} = x + 2y$$

3+2

5

(4)

Also draw rough sketch of the corresponding phase portraits.

11. Solve the equation
$$\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + 3y = 0$$
 about the ordinary point $x = 0$.

Group - C

(Marks : 15)

Answer any three questions.

12. (a) Show that the set $S = \{(x, y) \in \mathbb{R}^2 : 0 \le x < 1, 0 \le y < 1\}$ is neither open nor closed. (b) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} y + x \sin\left(\frac{1}{y}\right), & \text{if } y \neq 0\\ 0 & \text{if } y = 0 \end{cases}$$

Show that $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ but $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$ does not exist. 2+3

13. Examine the existence of maxima or minima of the function $f(x, y) = x^2 + y^2 + (x + y + 1)^2$. 5

14. If $u = f(x^2 + 2yz, y^2 + 2zx)$, prove that

$$\left(y^2 - zx\right)\frac{\partial u}{\partial x} + \left(x^2 - yz\right)\frac{\partial u}{\partial y} + \left(z^2 - xy\right)\frac{\partial u}{\partial z} = 0.$$
5

- 15. Find the maximum or minimum of the function f(x, y) = xy, subject to the condition 5x + y = 13, using the method of Lagrange's Multipliers. 5
- 16. Find the directional derivative of the function $\phi(x, y, z) = x^2yz + 4xz^2$ at the point (1, -2, 1) in the direction of the vector $2\hat{i} \hat{j} 2\hat{k}$. Also find the greatest rate of increase of ϕ . 3+2