B(3rd Sm.)-Mathematics-H/CC-6/CBCS

2024

MATHEMATICS — HONOURS

Paper : CC-6

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- Choose the correct alternative with proper justification (1 mark for correct answer and 1 mark for justification):
 - (a) If R is a ring with unity I and S is a subring or R, then
 - (i) S has unity I (ii) S has unity which may or may not be I
 - (iii) S may not have unity (iv) S has unity different from I.
 - (b) The number of idempotents in the ring (\mathbb{Z}_{12} , +, \cdot) is
 - (i) 2 (ii) 3
 - (iii) 4 (iv) 6.
 - (c) Which of the following statements is not true?
 - (i) Every maximal ideal in a commutative ring with unity is a prime ideal.
 - (ii) Every prime ideal in a commutative ring with unity is a maximal ideal.
 - (iii) If P is a prime ideal of a commutative ring R with unity, then R/P is an integral domain.
 - (iv) If M is a maximal ideal in a commutative ring R with unity, then R/M is a field.
 - (d) The ideal $4\mathbb{Z} + 10\mathbb{Z}$ of \mathbb{Z} is equal to
 - (i) 20 **Z** (ii) 2 **Z**
 - (iii) $40 \mathbb{Z}$ (iv) $10 \mathbb{Z}$.
 - (e) Let R be a ring with unity 1_R and I be an ideal of R and I contains a unit of R. Then which of the following is true?
 - (i) I is a proper ideal of R (ii) I = R
 - (iii) $I = \{0_R\}$ (iv) $1_R \notin I$.
 - (f) Let $f: \mathbb{C} \to \mathbb{R}$ be a homomorphism such that f(x + iy) = x. Then Ker f is
 - (i) $\{x : x \in \mathbb{R}\}$ (ii) $\{0\}$
 - (iii) $\{ix : x \in \mathbb{R}\}$ (iv) $\{x + iy \in \mathbb{C} : x \neq 0 \text{ and } y \neq 0\}$.

Please Turn Over

B(3rd Sm.)-Mathematics-H/CC-6/CBCS

(g) A $n \times n$ matrix A is non-singular if and only if

- (i) all the eigenvalues of A are distinct
- (ii) det A = 0
- (iii) 0 is an eigenvalue of A
- (iv) 0 is not an eigenvalue of A.
- (h) Let V_1 and V_2 be finite dimensional subspaces of a vector space V. If $\dim(V_1) = 2$, $\dim(V_2) = 3$, $\dim(V_1 + V_2) = 4$, then $V_2 = 10^{-10}$. $\dim(V_1 + V_2) = 4$, then $\dim(V_1 \cap V_2)$ is
 - (ii) 2 (i) 1
 - (iv) 4. (iii) 3

(i) If
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 defined is by, $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ for all $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$; then Ker *T* is equal to

(i)
$$\{\alpha(1, 1, -1) : \alpha \in \mathbb{R}\}$$
 (ii) $\{\alpha(1, -1, 1) : \alpha \in \mathbb{R}\}$

(iv) $\{\alpha(1, 1, 1) : \alpha \in \mathbb{R}\}.$ (iii) $\{\alpha(-1, 1, 1) : \alpha \in \mathbb{R}\}$

(j) Which one of the following polynomial is satisfied by the matrix A where $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \end{pmatrix}$?

(i)
$$x^3 + 5x^2 - 5x - 1$$

(ii) $x^3 - 5x^2 + 5x + 1$
(iii) $x^3 - 5x^2 - 5x + 1$
(iv) $x^3 - 5x^2 + 5x - 1$.

Unit - I

2. Answer any five questions :

- (i) Prove that the characteristic of an integral domain is either zero or a prime number. (a)
 - (ii) If R is a commutative ring of prime characteristic p, prove that $(a+b)^p = a^p + b^p$ for all 3+2 $a, b \in R$.
- (i) Let a, b (with $b \neq 0$) be two elements of a field F with $(ab)^2 = ab^2 + bab b^2$, prove that (b) a = 1.

3+2

- (ii) Prove that a field does not contain a divisor of zero.
- (i) Examine if S is a field, where $S = \{a + b\sqrt{2} : a, b \in Z\}$. (c)
 - (ii) Show that the mapping $f: \mathbb{Z}[\sqrt{2}] \to M_2(\mathbb{Z})$ defined by $f(a+b\sqrt{2}) = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix}$ is a homomorphism of rings. Find Ker f. 2+(2+1)

(3)

B(3rd Sm.)-Mathematics-H/CC-6/CBCS

- (i) Let R be a ring and $a \in R$. Show that $S = \{x \in R : ar = x \text{ for some } r \in R\}$ is a subring of R. (ii) If a, b, c be any three elements of a ring be $(R, +, \cdot)$, show that (a-b) - c = a - (b+c).
- (e) If R is a commutative ring with identity and M be an ideal of R, show that R/M is a field if and only if M is a maximal ideal of R.
- (f) Let P, Q be prime ideals of a commutative ring R. Prove that $P \cap Q$ is a prime ideal of R if and 5 5
- (i) Let R and R' be two rings and $\phi: R \to R'$ be a homomorphism. Then show that Ker ϕ is an (g)
 - (ii) Let M be a maximal ideal of a commutative ring R with unity. Then show that M is a prime 3+23+2
- (i) Find the maximal ideals and prime ideals in the ring \mathbb{Z}_6 . (h)
 - (ii) A surjective ring homomorphism $f: \mathbb{Z} \to \mathbb{Z}_3 \times \mathbb{Z}_5$ is defined by, $f(x) = ([x]_3, [x]_5)$. Find $x \in \mathbb{Z}_5$ such that, $f(x) = ([2]_3, [3]_5)$. Determine Ker f. 2+(2+1)

Unit - II

3. Answer any four questions :

(d)

- (i) Let V be a vector space of dimension n over a field F. Prove that any linearly independent set (a) of n vectors of V is a basis of V.
 - (ii) If $\{\alpha_1, \alpha_2, \alpha_3\}$ be a basis of a real vector space V and $\beta_1=\alpha_1+\alpha_3,\ \beta_2=2\alpha_1+3\alpha_2+4\alpha_3$

$$\beta_3 = \alpha_1 + 2\alpha_2 + 3\alpha_3$$
, prove that $\{\beta_1, \beta_2, \beta_3\}$ is also a basis of V. $3+2$

- (i) Prove that a linearly independent set of vectors in a finite dimensional vector space V over a (b) field F is either a basis of V, or it can be extended to a basis of V.
 - (ii) Extend the set $S = \{(1, 2, 1), (2, 1, 1)\}$ to a basis of \mathbb{R}^3 . 3+2
- (c) Let V and W be finite dimensional vector spaces of same dimension over a field F and $T: V \to W$ be a linear mapping. Then prove that T is an isomorphism if and only if T maps a basis of V to a basis of W. 5
- (d) Let V and W be two vector spaces over a field F and $T: V \to W$ be a linear mapping. If the dimension of V is finite, show that dim $V = \dim ker T + \dim Im T$. 5
- (i) Show that the eigenvalues of a Hermitian matrix are real. (e)
 - (ii) λ is an eigenvalue of a real skew symmetric matrix. Prove that $\left|\frac{1-\lambda}{1+\lambda}\right| = 1$. 2+3

Please Turn Over

(1131)

B(3rd Sm.)-Mathematics-H/CC-6/CBCS

(f) The matrix of a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ relative to the ordered basis $\{(-1, 1, 1), (1, -1, 1), (-1, 1)$

$$(1, 1, -1)$$
 of \mathbb{R}^3 is $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 3 \\ 3 & 3 & 1 \end{pmatrix}$. Find the matrix of *T* relative to the ordered basis {(0, 1, 1), (1, 0, 1), (1, 1, 0, 1), (1, 1, 0)} of \mathbb{R}^3 .

(g) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$. Applying Cayley–Hamilton theorem to prove that $A^n - A^{n-2} = A^2 - I$, for all

integers $n \ge 3$. Hence find A^{40} .

3+2