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1. Introduction 

 

Droughts are slow-onset events induced by climate change and with acute shortages of water. It is one of the most 
pervasive climatic risks, with no universal description; it is not a well-defined criterion for evaluating its intensity; and it has no 
definite starting point or end date. It is one of the most destructive natural catastrophes owing to its impact on agricultural 
activity and water supplies, and it has caused serious economic, environmental, and sociological difficulties throughout the 
world (Getahuhn and Li, 2023). This phenomenon plays a role in different segments of nature and can generally be defined as 
meteorological, hydrological and agricultural drought. Socioeconomic drought refers to the association of these three elements 
(Ding et al., 2021). The intensity varies depending on the duration and period of occurrence of the event. With respect to 
several drought occurrences, meteorological drought is more severe since its severity can lead to surface and subterranean 
water shortages, crop yield declines, losses in soil moisture and reductions in socioeconomic amenities. This can result in 
reduced water storage and affect the water supply in water conservancy projects, social economic water use and ecological 
water use (Tsakiris, 2017; Heim, 2002). Water scarcity destroys the agricultural water balance and reduces crop output, causing 
food issues and even hunger. Drought may also have an impact on ecosystem stability and can even kill animals during severe 
drought seasons owing to a lack of suitable drinking water (Ledger et al., 2011, Wang et al., 2019). The Irrigation Commission 
of India, Government of India (1976), denotes a scenario in which yearly rainfall is less than 75% of average rainfall 
(Parthasarathy et al., 1987; Shah et al., 2015). The prevalence of meteorological drought seems to be correlated with a shortage 
of monsoon rainfall, while rising temperatures could worsen drought. Drought conditions are very common in subhumid 
regions in India because of the irregular and uneven distribution of monsoons and the long range of extremely high 
temperatures (Pathak and Dodamani, 2019). Many studies have shown that subhumid regions of India are facing increasing 
trends in the severity of drought. Drought is considered a natural hazard, and in recent decades, it has had a significant 
influence on the global environment. Water scarcity disrupts the agricultural water balance and results in lower crop 
production or an unsuccessful harvest. It will also create food issues and even hunger. Drought may also affect ecosystem 
stability and potentially kill animals during severe drought seasons owing to a lack of sufficient drinking water (Ledger et al. 
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2011). Drought has had a substantial impact on all of these factors in recent years, especially in light of increasing population, 
agricultural expansion, and industrial and economic development (Ahmadalipour et al., 2019, Wang et al., 2019). Therefore, 
people need to pay particular attention to drought. 

Various meteorological drought indices are important for monitoring dry and wet conditions at a single value on the 
basis of various parameters related to meteorological aspects. Indices such as the surface water supply index (SWSI) (Shafer 
and Dezman., 1982), rainfall anomaly index (Rooy, 1965), Palmar drought severity index (Palmar, 1965), crop moisture index 
(CMI) (Palmer, 1968), Bhalme and Mooley drought index (Bhalme and Mooley, 1980), standardized precipitation index (SPI) 
(Mckee, 1995), effective drought index (EDI) (Byun and Wilhite., 1999), reclamation drought index (RDI) (Tsakiris and Vangeli, 
2005), and standardized precipitation evapotranspiration index are important for delineating meteorological drought. For 
agricultural drought, the moisture adequacy index (MAI) (McGuire and Palmer, 1957), crop moisture index (CMI) (Palmer, 
1968), crop-specific drought index (Meyer et al., 1993), and soil moisture deficit and evapotranspiration deficit index 
(Narsimhan and Srinivas, 2005) are the major indices. Similarly, the surface water supply index (SWSI), standardized 
hydrological index (SHI), standardized water supply index (SWSI) (Shafer and Dezman, 1982), standardized runoff index (SRI) 
(Shukla and Wood, 2008), and standardized streamflow index (SSI) (Vicente-Serrano et al., 2012) are the major indices for 
hydrological drought. 

To determine the intensity, duration and geographic extent of drought, the World Meteorological Organization 
recommends calculating the standardized precipitation index (SPI) and the standardized precipitation evapotranspiration index 
(SPEI) (Nedealcov et al., 2015). The SPI and SPEI have advantages, as these techniques employ previous cumulative climatic 
conditions, which also influence the value of the present index and are more valuable characteristics. The SPI is based on 
precipitation data, whereas the SPEI is based on precipitation and evaporation-transpiration data. These two drought indicators 
are extremely important for tracking the degree of precipitation, determining water levels, estimating agricultural production, 
monitoring the frequency of wildfires and other events (Shaik, 2020; NOAA.,2021). 

Soil moisture decreases when associated with precipitation anomalies within a relatively short time frame. 
Groundwater, river flow and reservoir accumulation reflect long-term precipitation anomalies. To satisfy seasonal rainfall 
characteristics, McKee et al. estimated the SPI for several time intervals (3, 6, 12, 24 and 48 months) (Bhunia et al., 2020). The 
SPI is a basic index based on the chance of precipitation, and its calculation requires monthly precipitation data for at least 30 
years. The precipitation is normalized via a probability distribution, and the SPI values are displayed as standard deviations 
from the median. 

 

Table 1 Categorization of SPI and SPEI values. 

Climatic moisture categories SPI or SPEI 

Extremely wet ≥2.0 
Severely wet 1.5 to 1.99 
Moderately wet 1.0 to 1.49 
Normal 0.99 to - 0.99 
Moderate drought - 1.0 to - 1.49 
Severe drought - 1.5 to - 1.99 
Extreme drought ≤- 2.0 

Source: McKee (1995). 
 

The SPEI relies on potential evapotranspiration, which calculates atmospheric precipitation, temperature and latitude, 
vapor pressure, solar radiation, and elevation of the area. It is an index-based computation process, and the drought categories 
are the same as the available SPI time scales. The SPEI calculation is based on the monthly difference between precipitation 
and potential evapotranspiration, which is a simple water balance approach. As a result, a comprehensive collection of 
atmospheric and water balance data is employed to calculate the same values (Nedealcov et al., 2015). The increasing pattern 
of evaporation caused by global warming is a significant component of drought analysis. In this context, the SPEI is superior to 
the SPI. However, compared with the SPI, the use of the SPEI in arid climates is severely limited. As an outcome, implementing 
a relative assessment of these indicators yields the best results on the basis of the area of concern. India is one of the most 
drought-prone countries in the world, with the most rainfall occurring during the southeast monsoon (June--September) and 
insufficient rainfall causing drought in various regions (Kumar et al., 2013). 

Exponential smoothing is a relatively recent concept in this discipline and was created in the field of corporate 
mathematics in 1960 (Mishra and Desai, 2005). The exponential smoothing approach is a highly accurate scientific method for 
simulating and forecasting drought, particularly meteorological drought. A long-term drought tendency curve was generated 
via the exponential smoothing technique in Bankura (Raha and Gayen., 2019). 

Li et al. (2020), Wang et al. (2019), Liu et al. (2020), Vicente-Serrano et al. (2015), etc., compared the SPEI with the SPI 
to identify drought incidence at the regional level across different climatic zones. Several studies (Roy et al., 2022; Zhai et al., 
2020; Nath et al., 2017) have been conducted on drought analysis in India, and they reported increasing trends in drought 
severity and frequency over the agriculturally significant subhumid eastern region of the country in recent decades. 
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Shahfahad et al. (2023), Kundu et al. (2020), and Panday et al. (2020) used the SPI to examine the distribution and 
intensity of meteorological droughts in India. Several current studies suggest that the evapotranspiration-based SPEI is an 
improved indicator when it combines with the precipitation-based SPI for drought incidence in subhumid regions of India (Roy 
et al., 2023; Bera et al., 2021; Monish and Rehana, 2020; Li et al., 2020; Singh and Shukla, 2020; Singh et al., 2019; Pathak and 
Dodamani, 2019). Drought conditions are frequent in the subhumid regions of India because of the disproportionate 
distribution of monsoon rainfall with rising temperatures (Pandey and Srivastava, 2019). Additionally, every region has unique 
climatic features that interact differently with anthropogenic activities and climate change. In previous decades, the western 
part (Chotonagpur Plateau) of Purulia has been subjected to short-term droughts (Jha et al., 2013). 

Groundwater level monitoring via well data is the primary source of information on the impact of hydrologic stresses 
on groundwater systems (Ahmadi and Sedghamiz, 2006). Groundwater storage fluctuations correspond well with interannual 
rainfall variability. In the humid area of Benin, recharge occurs periodically and linearly in response to rainfall reaching an 
apparent threshold of between 140 and 250 mm/year (Kotchoni et al., 2018). In this work, the trend of groundwater level 
fluctuations was analyzed to determine how far it changed according to drought and wet conditions. 

This study aims to fill the research gap of actual recent scenarios of meteorological drought in the Chotonagpur Plateau 
in the west to plain valley in eastern Purulia district with justifications for the surface water scenario and water depth (borehole 
data). There is a significant absence of monsoonal rainfall scenarios and trends of irregular rainfall to understand the actual 
period of drought in this semiarid region for water stress management. The water demand is greater than the amount of water 
available in this region. Serious water scarcity and recurring drought incidents are occurring in this area. The main objective of 
this study is to determine the conditions, trends, intensities and drought forecasts via the SPI and SPEI for a specified period 
and determine the strong relationships between precipitation and evapotranspiration and the groundwater level. 
 

 
Figure 1 Study area. 
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2. Materials and Methodology 
 

2.1. Study Area 
 

The Purulia district, located in western West Bengal, is an eastern section of the Chota Nagpur Plateau. The research 
region lies between latitudes 22°42’35’’N to 23°42’’N and longitudes 85°49’25’’E to 86°54’37’’E. The district has a total size of 
6259 km2 and 20 Community Development blocks. Purulia is well recognized as a drought-prone area and is located in the 
state's semiarid zone. The district is located in the agroclimatic area of the Eastern Plateau and Hills, as well as the subregions 
of the Chhotonagpur South and West Bengal Plateau. The climate in the district is subtropical, with significant evaporation and 
relatively little precipitation. The primary lithological formations of the studied region are mostly igneous and metamorphic 
rocks (i.e., granite and granitic gneiss), which sculpt a distinct physical environment and topographical differences throughout 
the district (CGWB, 2022). The annual rainfall ranges between 1100 and 1500 mm. During the monsoon season, the relative 
humidity ranges from 75% to 80%. In the scorching summer, however, it decreases to 25% to 35%. Temperatures range from 
7°C in the winter to 46.8°C in the summer (District Disaster Management Plan, 2020--2021). 
 

2.2. Dataset 
 

In this study, rainfall and temperature data from the previous 21 years (1998--2018) in the Purulia district were used to 
calculate the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI). Monthly 
data on precipitation, maximum minimum temperature, wind speed, radiance, etc., attributes were gathered from the NASA 
website (https://giovanni.gsfc.nasa.gov/giovanni/). Drought indices (SPI, SPEI) can be developed with a minimum of 20-year 
datasets. The SPI was computed for Hunan Province for 20 years (1989--2008), where the climate is a monsoon humid type of 
subtropical weather (Zhang et al., 2019). The groundwater level data from 1998--2018 were downloaded from the Central 
Groundwater Board. 
 

2.3. Standardized Precipitation Index (SPI) 
 

A long-term monthly rainfall series is required for the SPI computation (McKee et al., 1993, Getahun and Li, 2023) for a 
specified time scale and location. This index was designed to recognize the scarcity of rainfall and the severity of drought. The 
probability density function (PDF) of an appropriate distribution is derived to characterize the long-term time series of observed 
precipitation. The cumulative probability of observed precipitation is calculated. The SPI is then calculated by applying the 
inverse normal (Gaussian) function to the cumulative probability, with a mean of zero and a variance of one (Pathak & 
Dodamani., 2019). The rainfall data (1998--2018) were fitted to a gamma distribution function in this case. 

The R programming language has been utilized to study the SPI values. The formula is used to calculate the Gamma 
distribution's likelihood function. 

 

𝑔(𝑥) =
1

𝛽∝Γ(𝛼)
𝑥𝛼−1𝑒−𝑥/𝛽              (1) 

 

where 𝛼= shape, 𝛽=scale and 𝑥= amount of precipitation. 
The standardized precipitation index (SPI) uses the same rule as the Z score, as written below: 

𝑆𝑃𝐼 =
𝑋− 𝜇

𝜎
                   (2) 

 

where X= actual precipitation, 𝜇= average precipitation and 𝜎= standard deviation of the dataset. 
 

2.4. Standardized Precipitation Evapotranspiration Index (SPEI) 
 

Vicente-Serrano et al. developed the SPEI (Vicente-Serrano et al., 2010). The SPEI considers both rainfall and 
temperature components and depicts the impact of evaporation deviations, making it a more expected calculation for drought 
events induced by rising temperatures. SPEI computation is similar to SPI computation (Getahun et al. 2023, Liu et al., 2021). 
The Penman‒Monteith technique is commonly used to calculate reference evapotranspiration (ET), which is the quantity of 
water that evaporates and transpires under ideal conditions. Generally, a log-logistic distribution is exhibited for the SPEI at 
different time scales, as determined by the Kolmogorov‒Smirnov test. The water balance is computed at each time step 
(monthly, seasonal, or yearly) by subtracting precipitation (P) from potential evapotranspiration (PET). The PET was calculated 
via the Penman‒Monteith technique, which considers climatic factors such as the maximum-minimum temperature, wind 
speed, dew point, solar radiation, latitudinal position, and average height of the region of interest (Vicente--Serrano et al. 
2010). The data were derived from Giovanni as daily data at the Nasa site (https://giovanni.gsfc.nasa.gov/giovanni/). The 
Penman‒Monteith equation was applied to calculate the PET. The Penman‒Monteith formula is as follows: 
 

𝑃𝐸𝑇 =
0.408×∆×(𝑅𝑛−𝐺)+𝛾×

900

𝑇+273
 ×𝑢 ×(𝑒𝑠−𝑒𝑎)

∆+𝛾×(1+0.34×𝑢)
            (3) 
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where PET = potential evapotranspiration (in units of water depth, such as millimeters or inches per time period, often daily or 
monthly); ∆ = slope of the vapor pressure curve (kPa/°C); Rn = net adiation at the crop surface (MJ/m2/day); G = soil heat flux 
density (MJ/m2/day); γ = psychometric constant (kPa/°C); T = mean daily air temperature (°C); u= wind speed at 2 meters above 
the surface (m/s); es = saturation vapor pressure (kPa); ea = actual vapor pressure (kPa). 

This algorithm was run for 21 years for three separate months, including premonsoon, monsoon, and postmonsoon 
data. 

 

𝐷𝑖 = 𝑃 − 𝑃𝐸𝑇               (4) 
 

The quantity of water that might evaporate and transpire from the land surface under given climatic circumstances is 
referred to as potential evapotranspiration. The estimated water balance numbers are standardized so that they may be 
compared across geographies and time periods. On the basis of these data, the water balance values are fitted to a probability 
distribution (typically a normal or gamma distribution). 

 

𝐹(𝑥) = [1 + (
1

𝑥−𝑦
)]                    (5) 

 

2.5. Mann‒Kendall test with Sen’s slope estimator value 
 

The Mann‒Kendall (MK) test, a nonparametric test, was utilized in R-studio for trend analysis of seasonal and 
annual rainfall and temperature (Getahun et al. 2021). The Mann‒Kendall test (Kendall., 1975) is a statistical technique used 
to identify trends in time series data. It is particularly valuable when dealing with data that do not follow a normal distribution 
or when outliers are present. The WMO recommends the use of this nonparametric test in climatic studies. This technique is 
extensively used to determine when a weather variable fluctuates substantially. In these test statistics, the null and alternative 
hypotheses are primarily considered. The Mann‒Kendall test was applied to the SPI and SPEI results of different time scales. 
The Mann‒Kendall statistic (S) is calculated by comparing the number of pairs of data points that exhibit a rising, decreasing 
or no trend. 

 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘)𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1                  (6) 

 

where xi and xj are the ranking data values at periods i and j, respectively, and the sum of all unique pairs (i, j) with j > i is taken. 
The variance of the Mann‒Kendall statistic is calculated to determine the significance. 
 

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛−1)(2𝑛+5) ∑ 𝑡1

𝑚
𝑖=1 (𝑖)(𝑖−1)(2𝑖+5)

18
                     (7) 

 

The Mann‒Kendall statistic (S) is divided by the square root of the variance (Var(S)) to obtain the test statistic (Z). 
 

𝑍 = (𝑆/√𝑉𝑎𝑟 (𝑆))                       (8) 
 

Sen's slope is a nonparametric approach for estimating the slope or trend in time series data. It is known as Sen's 
estimator (Sen., 1968). It is frequently used to analyze patterns in time series data in hydrology, climatology, environmental 
science, and other domains. It calculates each pairwise (i, j) difference between the data points. 

 

𝐷𝑖𝑓𝑓 (𝑖, 𝑗) = (𝑋𝑗 −  𝑋𝑖) ÷ (𝑗 − 𝑖)                     (9) 
 

where xi and xj represent data values at periods i and j, respectively. 
In this analysis, the Mann-Kendall test was employed to detect trends, with statistical significance established at a p-

value threshold of 0.05. 
 

2.6. Analysis of Drought and Future Predictions with the Holt-Winters Test 
 

Holt-Winters smoothing is a time series forecasting approach that makes forecasts about future values via past data 
(Mishra & Desai, 2005). This method evaluates the trend, seasonality and level components from historical data and uses them 
to project future values beyond the given data. Trends and seasonality show a degree of continuity in climate indices such as 
the SPI and SPEI. As a result, the approach may yield relatively accurate forecasts for short- to medium-term time frames. In 
this study, a ten-year forecast was developed to demarcate the short-term future drought tendency in a realistic manner and 
enforce prompt action over the region. The key issue in predicting a random variable is determining the function of 
the probability density of future values on the basis of prior observations. The steps of this test are described below. 

 

𝐿𝑡 = 𝑎(𝑌𝑡 − 𝑆𝑡−𝑚) + (1 − 𝑎)(𝐿𝑡−1 + 𝑏𝑡−1)                       (10) 
 

𝑏𝑡 = 𝛽(𝑇𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑏𝑡−1                 (11) 
 

𝑆𝑡 = 𝑦(𝑌𝑡 −  𝐿𝑡) + (1 − 𝛾)𝑆𝑡−𝑚                    (12) 
 

𝐹𝑡+ℎ = 𝐿𝑡+ℎ(𝑇𝑡 + 𝑆𝑡+ℎ−𝑚)                              (13) 
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Here, Lt, bt, and St represent the observed value, level (baseline), and seasonal component at time t, respectively; α, β 
and γ are the smoothening parameters; h represents the periods of future prediction; and Ft+h represents the forecast of t+h. 

The Holt-Winter forecasting method uses smoothing constants to adapt to time series data that exhibit trends and 
seasonal patterns. Alpha (α) adjusts the weight given to recent data when determining the series' average level.  Beta (β) 
controls how much influence recent changes have on the estimated trend (the series' rate of increase or decrease). Gamma 
(γ) manages the weight given to recent seasonal factors within the recurring patterns of the series. By tuning these constants, 
the method balances the forecast's responsiveness to recent changes against its overall smoothness (Encik, 2015) 
 
2.7. Trend of the groundwater level 
 

The mean was computed via groundwater level data from all the borehole points in the Purulia district. From 1998–
2018, three distinct mean values were determined. Three mean values were calculated on the basis of monsoonal, 
premonsoonal and postmonsoonal data. The R-square values were then assigned to each regression model to demonstrate 
how closely the regression line approximates the actual data. 
 

3. Results 
 

In this study, different types of calculations were performed to determine the frequency, intensity and magnitude of 
drought in this region over 21 years, and forecasts for the next 10 years were projected. This would help a suitable operation 
beforehand in the upcoming years. 
 

3.1. Drought frequency 
 

Drought frequency and severity have been evaluated through various statistical drought analyses. According to the 
requirements, the SPI and SPEI can be measured at various time scales. Here, 4, 6 and 12 monthly SPI and SPEI values were 
calculated. Purulia district is located under monsoonal climatic conditions. Therefore, 4 monthly SPIs and SPEs were needed to 
distinguish premonsoonal, monsoonal and postmonsoonal calculations. SPI-6 and SPEI-12 were required for semiannual 
drought assessment, and for annual drought, SPI-12 and SPEI-12 were highly applicable. There is a scale by McKee that 
demonstrates various drought categories according to values such as moderate, severe and extreme. 
 

3.1.1. Results of SPI 
 

A total of 252 months were considered for the calculation of the SPI. A total of 170, 24, 7 and 7 months were recognized 
as normal, moderate, severe and extreme drought months, respectively, by SPI-4. A total of 173, 19, 8 and 6 months of normal, 
moderate, severe and extreme drought months, respectively, were identified by the SPI-6. According to the SPI-12, 169 were 
normal, 25 were moderate drought months, and 10 were severe drought months within the period 1998-2018. The months in 
which the different SPI-based droughts are most prevalent are listed here. 
 

Table 2 Occurrence of drought severity using the SPI at different times from 1998–2018. 

SPI Time Scale Drought Severity Months 

SPI-4 Extreme (7) 1999- Mar, Apr/2009-Feb/2010-Aug/2015-Nov, Dec/2017- Feb 
Severe (7) 2000-Oct/2009-Apr/2010-Jul, Sept, Oct/2012- May/2018-March 

Moderate (24) 1998-Jul, Aug/1999-May/2000-Sep, Nov/2001-Nov, Dec/2002-May/2004-May/2005-May-
Sep/2006-Feb/2007- Jan/2008-Dec/2009-Jan/2010-Jun, Nov/2012-Jun/2016-Jan/2017-Jan 

SPI-6 Extreme (6) 1999-May/2009- Apr/2010- Aug, Nov/2016- Jan, Feb 
Severe (8) 2000-Dec/2005- Sept/2009- Feb, Mar/2010- Jul, Sept, Oct, Dec 

Moderate (19) 1999-Apr/2000-Aug, Oct, Nov/2001-Jan/2002- Jan, Feb/2005- May-Nov/2009- Jan, Jun/2010- May, 
Jun/2016- Mar/2017- Mar 

SPI-12 Extreme (0) 
 

Severe (10) 2008- Aug, Sep/2010- Aug, Oct/2011- Jan-May/2016- Jul 
Moderate (25) 2000- Oct, Nov, Dec/2001-Jan-May/2002- Jul, Aug/2003- Jun, Sep/2005- Jun, Oct-Dec/2006- Jan-

May/2009- Jun-Aug/2010-Aug 
 

3.1.2. Results of the SPEI 
 

SPEI has been run on this time period of 1998-2018. Here, 166, 23,14 and 3 months have been identified as normal, 
moderate, severe and extreme drought months by SPEI-4. Again, by SPEI-6, 22, 14, 3 and 170 were moderate, severe, extreme 
and normal drought months. Total 17, 8 and 5 months have been identified as moderate, severe and extreme drought months 
by SPEI-12. The months in which the different SPEI-based droughts are most prevalent are listed here. 
 

3.2. Identification of Drought Trends 
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Trends in rainfall, temperature and PET throughout the eastern part of the Chotonagpur Plateau region were evaluated 
via the Mann‒Kendall (M-K) test and Sen’s slope test. To portray the trends in spatiotemporal drought characteristics, the M-
K test was applied to SPI-4, SPI-6, and SPI-12 and to SPEI-4, 6, and 12. To consider the situations of the premonsoonal, 
monsoonal and postmonsoonal months, the test was applied to the SPI and SPEI values for May, September and January. The 
values of the SPI and SPEI revealed that most of the drought events were present in the premonsoonal period. However, the 
M-K test did not reveal any such prominent trend in this climatic data analysis. However, according to the results, Sen’s 
estimator revealed a negative magnitude of dry months in the postmonsoonal period, whereas in the monsoonal and 
postmonsoonal periods, there was no such trend. In terms of Sen’s slope, the magnitude decreased at the 5% level of 
significance to negative values in the postmonsoonal (January) SPI and SPEI analyses, such as -0.0193, -0.0163, and -0.0134 for 
the SPEI-4, SPEI-6 and SPI-4, respectively. If only postmonsoonal rainfall and evapotranspiration are considered, then the 
drought seasons are relatively more common. However, in the monsoonal and premonsoonal seasons, a slight positive 
magnitude was detected in the rest of the SPIs and SPEIs. For SPI-4, the magnitudes were 0.039 and 0.051 in May and 
September, respectively. For SPI-6, the magnitudes were 0.043, 0.064 and 0.057 in Jan, May and September, respectively. For 
SPI-12, 0.015, 0.0370, and 0.0474 were the magnitudes for January, May and September, respectively. In the case of the SPEI-
4, the magnitude in May was 0.039, that in September was 0.051, and the estimated slope values were 0.051 and 0.034 in May 
and September, respectively. The slope values were 0.015, 0.037 and 0.048 in Jan, May, and September, respectively, for the 
SPEI-12. 
 

 

 

 

Figure 2 SPI for drought severity assessment, 1998-2028, a. 4-month time scale, b. 6-month time scale, c. 12-month time scale. 
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Figure 3 SPEI for drought severity assessment,1998-2028, a. 4-month time scale, b. 6-month time scale, c. 12-month time scale. 
 

Table 3 Occurrence of drought severity via the SPEI at different times from 1998–2018. 

SPEI Time Scale Drought Severity Months 

SPEI-4 Extreme (3) 2001-Jan, Feb/2010-Oct 
Severe (14) 1999-Apr, May, Jun/2001-Mar, Apr/2005-Aug, Sept, Nov/2010-Jun-Nov/2014-Dec 

Moderate (23) 1998-Aug, Sept/1999-Mar/2000-Dec/2001- May/2002-Oct, Dec/2005-Jun, Oct, Dec/2006- Jan, 
Feb, Mar/2010- Apr, May/2011-Mar/2012-Jun, Aug, Sept/2013- Mar, May, Nov, Dec 

SPEI-6 Extreme (3) 2001- Feb, Apr/2010-Aug 
Severe (14) 1999-Jun/2001- Jan, Mar, May/2005- Sept, Oct, Nov/2006- Feb/2010- Jun, Jul, Sept-Dec 

Moderate (22) 1999-Apr, May, Jul, Dec/2001- Jun/2002-Dec/2005- Jun-Aug, Dec/2006- Jan, Mar, Apr/2011- Jan, 
Mar/2012- July, Aug, Oct, Nov/2013- Mar, May/2014-Dec 

EI-12 Extreme (5) 2010- Aug-Nov 
Severe (8) 2001-Aug/2006-Jan-Apr/2011-Jan-Mar 

Moderate (17) 1999-Apr-Jul/2001- May, Jul-Oct/2005-Oct-Nov/2006-May/2010-Jun/2011-Apr/2013-Apr, May 
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Table 4 MK test and Sen’s slope analysis of the SPIs and SPEIs. 

Index Month Z Score P value Kendall's tau Sen's Slope 

SPI4 All 2.279 0.023 0.096 0.002 
Jan -0.151 0.88 -0.029 -0.013 

May 0.936 0.349 0.150 0.039 
Sept 1.419 0.156 0.230 0.051 

SPI6 All 3.5 0 0.230 0.051 
Jan 0.936 0.349 0.150 0.043 

May 1.359 0.174 0.220 0.064 
Sept 1.54 0.124 0.250 0.057 

SPI12 All 4.48 0 0.190 0.004 
Jan 0.936 0.349 0.150 0.039 

May 1.299 0.194 0.210 0.053 
Sept 1.48 0.139 0.240 0.03 

SPEI4 All 0.37 0.711 0.016 0 
Jan -0.211 0.833 -0.038 -0.019 

May 0.876 0.381 0.140 0.033 
Sept 0.151 0.88 0.029 0.007 

SPEI6 All 1.296 0.195 0.055 0.001 
Jan -0.332 8 -0.057 -0.016 

May 1.6 0.11 0.260 0.051 
Sept 0.876 0.381 0.140 0.034 

SPEI12 All 3.15 0.002 0.130 0.003 
Jan 0.393 0.695 0.067 0.015 

May 0.574 0.566 0.095 0.037 
Sept 1.117 0.264 0.180 0.047 

 

Table 5 Descriptive Statistics of the SPIs and SPEIs. 

Informational Coefficient SPI4 SPI6 SPI12 SPEI4 SPEI6 SPEI12 

Minimum -2.273 -2.521 -2.030 -4.312 -2.134 -2.145 
Maximum 2.096 2.401 2.384 2.194 2.055 2.133 
Mean -0.001 0.007 0.005 -0.007 -0.002 0.000 
Median -0.016 -0.031 -0.011 0.045 -0.004 0.009 
Variance 0.927 0.902 0.868 1.042 0.906 0.897 
SD 0.963 0.950 0.932 1.021 0.952 0.947 
Skewness -0.007 0.008 0.119 -0.650 -0.053 -0.008 
Kurtosis -0.701 -0.285 -0.471 1.445 -0.691 -0.563 

 

3.3. Holt-Winter Test and Forecasting 
 

The Holt Winter algorithm is a time series forecasting approach that makes forecasts on the basis of prior data via 
exponential smoothing. A complete 10-year (January 2019--December 2028 total of 120 months) forecast was performed on 
the basis of the SPI and SPEI time series values. Three parameters, Alpha (α), Beta (β), and Gamma (γ), represent the level, 
trend and seasonality smoothing factors, respectively, which makes it more acceptable, as it considers many factors to calculate 
future predictions. 

In the cases of SPI-4 and SPEI-4, there were more extreme drought situations, which means that only the seasonal 
rainfall was normal. As this region is under the monsoonal belt, it can be claimed that only monsoonal rainfall is normal here; 
otherwise, the region faces drought with high temperatures throughout the years. The SPEI-6 revealed that 20, 17 and 43 
months represented moderate, severe and extreme drought, respectively, but according to the SPI-6, there was no drought 
month. For SPI-12, 29, 31 and 29 were extreme, severe and moderate drought months, respectively, and there was no single 
year of drought in SPI-6 and SPEI-12. It can be concluded that in the following year, most drought events will occur due to high 
temperatures. Rainfall variability and the duration of rainfall may differ, which can lead to seasonal drought. If rainfall occurs 
at an unusual time compared with normal, it might alleviate drought conditions in those months but could worsen drought 
conditions during the typical rainy months, thereby creating adverse conditions for the sociocultural life of human beings. 

Insufficient rainfall is present, which may result in a lower drought count, but it adversely affects the sociocultural life 
of the local population. Overall, this situation indicates a decreasing trend in rainfall. 
 

3.4. Correlation between the SPI and SPEI analysis 
 

Pearson's correlation is used to classify the degree of relationship between the SPI and SPEI at various time scales. 
Where the SPI considers historical precipitation data, the SPEI uses potential evapotranspiration along with precipitation, and 
these two values are also calculated on the basis of standardization, the Pearson correlation is perfect in this study. Here, the 
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strongest positive relationship was observed between the SPI12 and SPEI12, followed by between the SPI6 and SPEI6 and 
between the SPI4 and SPEI4. The lowest correlation was observed between SPI6 and SPEI12, followed by SPI12 and SPEI4 and 
between SPI4 and SPEI12. 
 

Table 6 Drought intensity according to Holt-Winter tests from 2019–28. 

Index Drought intensity  
Moderate Severe Extreme 

SPI-4 9 5 >25 
SPI-6 - - - 
SPI-12 >25 >25 >25 
SPEI-4 11 12 19 
SPEI-6 20 17 >25 
SPEI-12 - - - 

 

 

Figure 4 Correlation matrix, correlation between SPI & SPEI in different time scale. 
 

Table 7 Smoothing Parameters of the Holt-Winter Test. 

Smoothing Parameter SPI-4 SPI-6 SPI-12 SPEI-4 SPEI-6 SPEI-12 

Alpha 0.602 0.713 1.000 0.701 0.748 0.760 
Beta 0.000 0.000 0.000 0.001 0.004 0.007 
Gamma 0.875 0.893 1.000 1.000 1.000 1.000 
RMSE 1.132 0.786 0.435 0.739 0.599 0.482 
MAE 0.823 0.564 0.308 0.576 0.465 0.337 
MPE 106.681 366.440 112.152 118.474 50.232 -7.833 
MAPE 344.477 686.365 178.794 297.760 150.513 157.598 
MASE 0.669 0.482 0.274 0.447 0.360 0.268 

 

3.5. Trend of Groundwater Level 
 

Groundwater level data were downloaded and examined with mean values of premonsoonal, monsoonal, and 
postmonsoonal data. 
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Figure 5 Groundwater Depth from Surface of Pre-Monsoon, Monsoon and Post-Monsoon period. 
 

A premonsoon study revealed that the average depth was greater than 6 mbgl (m below ground level) over the years, 
although the level increased daily. During the monsoon season, the average gap between the water level and the surface was 
greater than 2 mbgl, and the trend line exhibited a negative trend, indicating an increasing trend in the water level. The 
postmonsoonal research produced a unique finding in which the average depth in these 21 years was 4 m, with a declining rate 
of water level. The water level increased throughout the premonsoonal and monsoonal periods, indicating a large supply of 
water. Conversely, the water level decreased during the postmonsoon period, indicating a poor recharge rate. 

 

4. Discussion 
 

This study was carried out to demonstrate meteorological drought, with specific reference to the SPI and SPEI, as well 
as its trend. In addition, the Holt-Winters test was carried out to forecast the coming ten years beginning in 2018. A 
meteorological drought study revealed that 1999, 2005, 2009, 2010 and 2016 were the month’s most prone to drought 
between 1998 and 2018. The results are closely aligned with previous studies. Bera et al. (2021) found that the moderate and 
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mild drought years were in various months of 2000, 2004, 2005, 2010, 2016 and extreme drought were in 1999, 2001, 2003, 
2014, 2015 and 2016. Similarly, Bhunia et al. (2019) stated that the months of 2003, 2014 and 2016 as Moderate Drought, 
1998, 2000 and 2002 as severe drought and 2000, 2015 and 2016 was extreme drought period. 

Except for any specific meteorological year (El-Nino-1997-98, 2002-03, 2006-07, 2009-10, 2015-16, 2018-19 and La-
Nina-1998-01, 2007-09, 2008-09, 2010-12, by NOAA), the periodic SPI (SPI4) indicated that extreme or severe drought occurred 
primarily between January and April. Chales Todd (1888) suggested that the effects of El Nino and La Nina hit Australia and 
India at the same time. In 2009, 14 states declared drought, a drought-like situation, or a shortage in 338 districts of the nation 
because of insufficient and unpredictable rainfall from the southwestern monsoon. The failure of India's monsoon, which 
increased food costs, and the 2009–10 El Nino weather pattern worsened India's drought. Approximately 2,000 people were 
killed by a severe El Nino in 1998, which also destroyed agriculture, infrastructure and mining in Australia and Asia for billions 
of Euros. Extreme occurrences such as droughts in Brazil and the Philippines and high temperatures in India and Thailand are 
just two examples of how the 2015–16 El Nino phenomenon has affected the world's climate. Over 2,000 people have died in 
the southern and eastern regions of India due to heat waves that lasted for many weeks. In these years, El Niño events were 
most severe. 

To determine the period of rainfall in this climatic region, a four-month standardization process is needed. This result 
indicated that there was no rain from November to May, resulting in severe weather conditions. The extreme drought months 
for SPI-6 and SPI-12 were from January to July owing to a lack of rainfall. The M-K test revealed that the overall trend of the 
May and September SPIs revealed no such negative or positive trend; however, the SPI-4 in January presented a negative 
tendency, which meant that postmonsoon rainfall decreased. Interestingly, substantially larger positive values of the May SPI 
indicated that premonsoonal precipitation increased slightly more than monsoonal rainfall did. According to the SPEI, the most 
severe drought incidents occurred from March to August and from October to December. Owing to very high temperatures in 
the summer months, which may reach 50°C, the SPEI indicates more drought months than SPIs do. The granitic gneissic and 
mica-schist area experiences very high evapotranspiration (Mitra and Acharya, 2015), and the majority of this district features 
a volcanic rock structure. Here, the bare granite formations and intense insolation assisted in evaporating more. The SPEI-4 
and SPEI-6 in January revealed a negative trend, and the propensity for drought in this region increased under periodic or 
semiannual conditions. Again, SPEIs for May demonstrated greater positive values, indicating that premonsoonal drought 
month counts were lower than those of the monsoonal drought month. The key finding of this study is that droughts are 
anticipated to occur at an alarming rate during the postmonsoonal season, whereas the premonsoonal phase would receive 
considerably more rainfall.  

Furthermore, the predictions for the next 10 years generated for all SPIs and SPEIs indicated a tendency toward 
decreasing precipitation rates throughout the year. The Holt-Winters test considers both seasonality and trends, despite the 
trend previously not indicating this much negative rainfall, which showed a diminishing rate of change in terms of seasonality 
and amount of change. There is a significant chance of receiving less rain, and drought may worsen from the current situation. 
According to Choudhury et al. (2021), the trend of drought during the monsoon season over the Gangetic and the Brahmaputra 
plain has increased significantly, along with low long-period average rainfall (Pai et al., 2011). 

Drought is a recurring natural crisis, not an unforeseen natural disaster. Identifying and anticipating drought patterns in 
semiarid areas is an important tool for long-term water resource management planning. In this projection, SPI-4 or periodical 
rainfall would cause more drought during postmonsoon times, whereas SPEI-6 or semiannual climatic conditions (precipitation 
and evapotranspiration) would aid in the occurrence of drought instances. 

This area experiences moderate to low precipitation during the monsoon months and heavy rainfall during the 
postmonsoon season, with approximately 80% of the precipitated water flowing as surface runoff due to the rolling landscape. 
Similarly, percolated water drains as subsurface runoff due to the presence of many first- and second-generation structural 
components, such as bedding planes, faults, folds, fractures, and foliation. Unscientific groundwater removal for agriculture 
has been practiced in recent years. As a result, the groundwater table is rapidly falling, accelerating hydrological and agricultural 
dryness in India's semiarid climatic zone. The changing trend of climatic character not only hindering the Ganga Delta region 
but also Mekong Delta in Vietnam primarily due to the irregular monsoonal rainfall (Sarkar et al., 2024). 
 

5. Conclusions 
 

The main problem in this region is water stress. Owing to its physiography, different types of droughts are observed 
throughout the district. Hence, it is essential to analyze drought types. Here, variability in monsoonal rainfall and drought 
conditions occurs immediately after the monsoon, highlighting that the timing of rainfall is not regular from July to September. 

A tendency toward a high precipitation rate in the premonsoonal period also demands water management, and 
agricultural practices should be checked according to the availability of water and rainfall tendency. Natural factors such as 
climate, groundwater, and surface water availability should be monitored regularly. As climatic conditions are changing, 
management strategies should accordingly be changed. Extrees in rainfall and temperature pose a risk to agriculture, food 
security, and socioeconomic vulnerability. Groundwater level research and data are critical for the survival of marginal farmers 
and tribal groups. To investigate the synergetic impacts of trends and patterns in other climatic variables, a more extensive 
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structural study is necessary. High-temperature-resistant plants and seeds should be grown, and farmers should be encouraged 
to grow these crops. The results of this study might constitute a first step toward improving the risk management approach, 
farming practices and water consumption in this region. 
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