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Abstract

A cloud load balancer should be pro�cient to modify it’s approach to handle the various task

kinds and the dynamic environment. In order to prevent situations where computing

resources are excess or underutilized, an ef�cient task scheduling system is always

necessary for optimum or ef�cient utilization of resources in cloud computing. Task

Scheduling can be thought of as an optimization problem. As task scheduling in the cloud is

an NP-Complete problem, the best solution cannot be found using gradient-based methods

that look for optimal solutions to NP-Complete problems in a reasonable amount of time.
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Therefore, the task scheduling problem should be solved using evolutionary and meta-

heuristic techniques. This study proposes a novel approach to task scheduling using the

Cuckoo Optimization algorithm. With this approach, the load is effectively distributed

among the virtual machines that are available, all the while keeping the total response time

and average task processing time(PT) low. The comparative simulation results show that

the proposed strategy performs better than state-of-the-art techniques such as Particle

Swarm optimization, Ant Colony optimization, Genetic Algorithm and Stochastic Hill

Climbing.
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Abstract

A cloud load balancer should be proficient to modify it’s approach to handle
the various task kinds and the dynamic environment. In order to prevent situ-
ations where computing resources are excess or underutilized, an efficient task
scheduling system is always necessary for optimum or efficient utilization of
resources in cloud computing. Task Scheduling can be thought of as an opti-
mization problem. As task scheduling in the cloud is an NP-Complete problem,
the best solution cannot be found using gradient-based methods that look for
optimal solutions to NP-Complete problems in a reasonable amount of time.
Therefore, the task scheduling problem should be solved using evolutionary and
meta-heuristic techniques. This study proposes a novel approach to task schedul-
ing using the Cuckoo Optimization (CO) algorithm. With this approach, the load
is effectively distributed among the virtual machines (VMs) that are available,
all the while keeping the total response time (RT) and average task process-
ing time(PT) low. The comparative simulation results show that the proposed
strategy performs better than state-of-the-art techniques such as Particle Swarm
optimization (PSO), Ant Colony optimization (ACO), Genetic Algorithm (GA)
and Stochastic Hill Climbing (SHC).

Keywords: Cloud Computing,Task Scheduling, Cuckoo Optimization Algorithm,
Response Time, Processing Time
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1 Introduction

The primary goal of cloud computing is to provide end users with distributed,
virtualized, and elastic resources, treating them as utilities [1].

The number of data centers in the cloud is increasing exponentially to meet the
demand for computing power[2].

The majority of cloud providers adhere to Service Level Agreement (SLA) criteria
while providing support for their services. The many Quality of Service (QoS) guide-
lines that the supplier promises make up the SLAs. Task scheduling is essential for
preserving SLA and quality of service in cloud computing. One of the key elements of
fully using cloud computing’s potential is to schedule tasks efficiently.

The scheduling of tasks in a cloud environment has become a significant challenge
in recent times and has gained significant attention in the field of research. Task
scheduling involves mapping tasks to available resources based on the characteristics
and requirements of the tasks. Once the users input their assigned tasks, the cloud
broker considers the qualities of both the resources and the tasks to map them to
accessible resources. These resources should be used appropriately and efficiently in
order to allocate the optimal resource to the task, taking into account the requirements
of an optimum resource allocation and attaining acceptable Quality of Service.

In cloud environments, scheduling is classified as an NP-complete problem.As
the number of users and the size of their associated computational tasks grow, the
complexity of scheduling these tasks increases proportionally.Existing task scheduling
strategies often fall short of meeting these demands. Therefore, improved algorithms
for task scheduling are necessary to decrease computation time and associated costs.
Task scheduling not only assists in managing the makespan of VMs but also plays a
crucial role in upholding the conditions outlined in the Service Level Agreement (SLA),
thereby ensuring better service quality for consumers through improved Quality of
Service (QoS).

Task scheduling is one crucial step in raising cloud computing’s overall perfor-
mance.An efficient task scheduling algorithm has a direct impact on overall system
performance.The process of assigning user tasks to VMs for processing is known as
task scheduling. Customers should be able to get their specified tasks completed on
the VM in the least period of time by using an effective scheduling strategy. However,
the service provider needs a certain kind of scheduler that can optimize resource use
and boost the satisfaction of customers. This makes it more important for the service
provider to have an appropriate task scheduling strategy.

Numerous solutions have been put up to address the task scheduling issue, and
each one seeks to meet one or more of the restrictions that service providers and con-
sumers have taken into consideration [3].This study differs from the previous ones in
that the proposed approach aims to present a dynamic multi-objective solution for
task scheduling on VMs, while also taking other Quality of Service aspects into con-
sideration and boosting the degree of load balancing. The following goals are intended
to be achieved by the suggested strategy:

• Decreasing makespan

• Maximizing resource utilization

2



• Reducing the degree of imbalance on VMs

• Lowering of response and processing times

In summary, the key contributions of this paper are as follows:

1. The robust search characteristic of Cuckoo search is used to identify the over-
utilized hosts and move one or more Virtual Machines (VMs) to the other hosts
from them. The over-utilized hosts’ use may decrease as a result of this approach.

2. To migrate tasks from overloaded VMs and optimize task processing time as well
as overall response time, a multi-objective task scheduling optimization model was
designed and to solve this suggested optimization model, a multi-objective Cuckoo
Search Optimizer was also developed.

3. Conducting comprehensive experiments by extending CloudAnalyst, we have suc-
cessfully validated that the proposed algorithm is viable in a heterogeneous
environment.

The following sections make up the remaining part of this paper: The review of
the literature is presented in the next part along with a quick explanation of task
scheduling in cloud computing. The cuckoo search algorithm is presented in Sect. 3,
and our suggested method for cloud scheduling is shown in Sect. 4. The presentation of
the experimental findings and assessment work is aided by Section 5. Our conclusion
is given in Section 6.

2 Literature Review

Over the past decade, numerous studies have explored load balancing in the cloud
environment, providing researchers with a robust framework to comprehend the var-
ious aspects of this issue. This section provides a summary of earlier survey studies,
consolidating the findings and insights gained from prior research in this domain.

In [4], a model of honeybee behavior for seeking and gathering food has been
created and the amount of time that tasks in the queue must wait is minimized by
taking into consideration their priority. When there are many tasks to be accomplished
and little resources available, this can be especially troublesome since lower-priority
tasks might never receive the chance to be completed.The stability and resilience of
the system are seriously jeopardized by a single point of failure brought about by
the production of bees from a single source. Our proposed technique overcomes this
drawback.

In the work by Nakai et al.[5], have offered a technique based on the reserve policy
to divide requests across repeating servers . This enables overloaded servers to hold
onto some of the distant servers’ capacity before processing a new request; requests
that exceed the normal limits of the remote servers will have some of their capacity
removed. The outcomes of the simulation demonstrated that their suggested approach
shortens response times. Even though this strategy speeds up response times, certain
queries are still turned down. Consequently, this approach was inappropriate for our
job.
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Dasgupta et al. [6] introduced a load balancing method using one of the most
popular artificial intelligence techniques—the Genetic Algorithm.In the context of
a cloud environment, the authors utilized GA-based load balancing techniques to
identify a globally optimal processor for a task. They treated the arrival of tasks as
linear, and rescheduling was not considered as a universally optimal solution. This
approach highlights the use of GA in addressing load balancing challenges within cloud
computing.

Various optimization techniques, such as Particle Swarm Optimization [7], Artifi-
cial Bee Colony [8], and Ant Colony Optimization [9], have been employed to tackle
load balancing issues. According to this study, these evaluated algorithms outperform
conventional ones in terms of metrics like makespan and response time. In dynamic
cloud environments where workloads change often, there is a risk of performing less
well than ideal. The algorithm might not be able to adjust to these changes fast
enough, which would lead to an ineffective load distribution. Ultimately, the reliability
and overall efficiency of cloud services may be impacted by these constraints.

In [10], the authors introduced three variants of the Ant-Lion Optimizer (ALO) and
Grey Wolf Optimizer (GWO) as task schedulers aimed at minimizing makespan. While
ALO and GWO outperformed FFA in terms of makespan reduction, they demon-
strated comparable results to PSO, with instances where ALO even surpassed PSO in
performance.But this technique could find it difficult to adjust quickly in extremely
dynamic cloud environments when workload and resource availability change regu-
larly, which could cause delays and poor system performance. These approaches may
also be computationally demanding, which raises the overhead for cloud systems and
can offset the advantages of optimal scheduling. Consequently, the general effective-
ness and dependability of cloud services may be impacted by the usage of ALO and
GWO as task schedulers.

In the study conducted by Syed Hamid and Hussain Madni [11], resource allocation
strategies in cloud computing were thoroughly examined and evaluated. The paper
identified factors that could enhance the functions and features of cloud systems.
Additionally, the article delves into the discussion of the requirements for resource
distribution in the cloud, covering policies, strategies, and algorithms for efficient
resource distribution and migration to best support both providers and users in the
cloud computing environment.

Azad et al. [12] proposed a fuzzy-based inverted ant colony optimization technique
for scheduling tasks and balancing the load in a cloud environment. This approach
likely involves leveraging fuzzy logic and ant colony optimization principles to address
the challenges of load balancing in the context of cloud computing. Fuzzy logic allows
for handling uncertainty and imprecision, while ant colony optimization is inspired
by the foraging behavior of ants and is used to optimize paths and allocations in a
network. The combination of these techniques aims to achieve effective task scheduling
and load balancing in the cloud.

In the computational model considered by Zaman et al. [13], each machine in a
cloud environment has a bounded capacity to execute a predefined number of tasks
simultaneously. In this context, the authors proposed a task scheduling heuristic called
Extended High to Low Load (ExH2LL). This heuristic aims to balance the workload
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across the available computing resources, improving resource utilization and reduc-
ing the makespan. ExH2LL dynamically identifies task-to-machine assignments by
considering the existing load on all machines.

In the work by Mishra et al.[14], the authors explored heuristic-based techniques
and investigated the use of various loads, including network, CPU, memory, etc., to
enhance performance in the cloud environment. This suggests that the study focused
on developing heuristic methods to address resource allocation and optimization
challenges in cloud computing, particularly considering diverse types of loads.

On the other hand, Balaji and Saikiran [15] discussed various resource alloca-
tion problems and provided optimal capital allocation strategies for demanding task
requests. This work likely delves into resource management and allocation strategies,
aiming to optimize the allocation of resources in response to specific task requirements
in the cloud environment.

G. Annie Poornima and Radhaman [16] synergized the strengths of Harries Hawks
Optimization and the Pigeon-Inspired Optimization Algorithm to create an efficient
load balancing system. The primary goal of this scheme is to enhance resource uti-
lization while minimizing task response time. According to simulation results, the
load balancing approach using the combined Hawks Optimization and Pigeon-Inspired
Optimization algorithm successfully achieved optimal load distribution among VMs
in a shorter duration when compared to existing algorithms. Diverse performance
metrics, such as computational time, cost, throughput analysis, makespan, latency,
and execution time, underwent evaluation and were compared against Harries Hawks
Optimization, Spider Monkey Algorithm, Ant Colony Optimization, and Honey Bee
Optimization.

Kumar et al. [17] conducted a study concentrating on harnessing cloud comput-
ing technologies to enhance resource allocation for sustainability in an organization’s
cloud infrastructure. They introduced a specialized pricing and allocation mechanism
designed for a private cloud computing service, facilitating efficient load balancing of
computing resources. The proposed approach implemented an optimal pricing strategy
within a dynamic pricing model, focusing on maximizing the net value of users within
the private cloud. To achieve load balancing in the cloud, they developed a task alloca-
tion algorithm based on this dynamic pricing model. The research findings emphasized
the importance of evenly distributing the number of tasks across individual resource
servers for optimal task allocation.

In a research study, Kamila et al. [18] introduced and merged artificial intelli-
gence and machine learning methodologies on a cloud platform with the concept of
high-performance computing (HPC). The objective was to ensure system performance
and continuous traffic flow resilience by utilizing networking and computing perfor-
mance data for validation, prediction, and classification of traffic and performance
patterns. The proposed integrated design method has been evaluated on various real-
time instances, employing machine learning regression and classification models to
automatically correct the system’s performance.

Kumar and Rajesh [19] introduced an innovative multi-objective load balancing
architecture aimed at achieving optimal load balancing in the cloud. The proposed
paradigm considers several crucial factors, including memory utilization, migration
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costs, power consumption, bandwidth consumption, and load balancing parameters
such as response time, turnaround time, and server load. To achieve optimal load
balancing, they devised a unique hybrid optimization technique termed the Mouse
Customised Golden Eagle optimization (MCGEO) model. This model represents a
conceptual amalgamation of the classic Golden Eagle Optimizer (GEO) and the Cat
and Mouse-Based Optimizer (CMBO).

For additional illustration, Table 1 compares several load balancing strategies used
in a cloud setting and lists the primary contributions of each study as well as the
characteristics that were taken into consideration.

3 Problem description and proposed solution

Task scheduling issues are crucial for the efficiency of all cloud computing infrastruc-
ture. In distributed systems, scheduling algorithms aim to distribute the workload
across processors to optimize their usage and minimize the overall task processing
time.

3.1 Problem Definition

An appropriate VM is assigned in cloud, based on the user’s request. Load balancing
strategies are employed to carry out this allocation. The scheduling issue becomes a
major problem in the cloud environment [12] as the count of cloud service providers
grows daily and the load on the cloud servers also increases. Some VMs may be
overused while others are underused when tasks are scheduled on them [13]. When
tasks are scheduled on VMs, it is possible for some VMs to be overused while others
stay underused.

As a result, an effective LB technique is required to balance the workload on
the servers by dividing the system’s entire load among the connected VMs [14]. By
using this technique, each VM is guaranteed to finish approximately the same num-
ber of tasks. Response time, throughput, reliability and resource optimization are
all improved, and system bottlenecks that might result from an unbalanced load are
also avoided. In unbalanced clouds, a two level load balancing architecture model is
presented for achieving the best load balancing. Physical Machine (PM) level load
balancing is used for the first level, and VM level load balancing is used for the sec-
ond level. This model abstracts the VM manager and VM monitor. Intra-VM task
migration and migration of tasks between VMs are required to carry out the load
distribution. Load balancing consists of scheduling and assigning tasks to VMs in
accordance with their needs.

3.1.1 Task Scheduling

Task scheduling involves distributing tasks among computing resources for computa-
tion. Additionally, the task scheduler must address scenarios where no VM is available
to execute a particular task; in such cases, the task should be migrated to another
VM for execution.

• Determining the user task requirements: The resource requirements of the
user tasks that will be scheduled to run on a VM are determined during this phase.
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Table 1 Comparative study of load balancing strategies in cloud computing
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[4] Suggesting a load balancing approach
inspired by the foraging behavior of
honey bees which considers the pri-
orities of tasks transferred from over-
loaded VMs

✓ ✓ × × ✓ × × ×

[5] Offering a technique based on the
resource reservation policy

✓ × ✓ ✓ × × × ✓

[6] Reviewing contemporary research in
load balancing, proposed a load bal-
ancing approach employing a genetic
algorithm that aims to determine the
globally optimal processor for tasks

✓ ✓ ✓ × × ✓ × ×

[7], [8],
[9]

Utilizing diverse optimization tech-
niques, including PSO, ABC, and ACO
load balancing is resolved

✓ × ✓ × × ✓ × ×

[10] Presenting three adaptations of the
Ant-Lion Optimizer and Grey Wolf
Optimizer as task schedulers with the
objective of minimizing makespan

✓ ✓ ✓ × ✓ ✓ × ×

[12] Presenting a fuzzy-based inverted ant
colony optimization scheme for load
balancing

✓ ✓ × ✓ ✓ × ✓ ×

[13] Suggesting an Extended High to
Low Load task scheduling heuristic
approach to distribute the workload
across the available resources

× ✓ × ✓ ✓ ✓ ✓ ×

[15] Proposing a resource management and
allocation plan with the goal of opti-
mizing resource allocation in the cloud
environment

✓ ✓ ✓ ✓ × × × ×

[16] Highlighting the benefits of the
Pigeon-Inspired optimization Algo-
rithm and Harries Hawks optimization
to build a load balancing system

✓ ✓ ✓ ✓ ✓ ✓ × ×

[19] Presenting a task allocation algorithm
based on dynamic pricing model to
accomplish load balancing in the cloud

✓ × ✓ ✓ ✓ ✓ × ×

[18] Providing an integrated design
approach that uses machine learning
regression and classification models to
make performance corrections to the
system automatically

✓ ✓ ✓ ✓ ✓ × × ×
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• VM resource details recognition: This verifies a VM’s resource information
status. It provides the unallocated resources and the VM’s current resource usage.
Based on this stage, the status of VM with respect to a threshold can be identified as
balanced, overloaded, or under-loaded.

• Scheduling of tasks: Once a VM’s resource information has been determined,
a scheduling algorithm schedules the tasks to the proper resources on the proper VMs.

• Allocation of resources: The resources are allotted to run the scheduled
tasks.To do this, a resource allocation strategy is being used. Although scheduling
is necessary to expedite execution, allocation policy is used to manage resources
effectively and boost resource performance.

• Migration of VMs: The load balancing process in the cloud is incomplete
without migration. To solve the overloading issue, VM migration involves moving a
VM from one physical host to another.

• Task Migration: Task Migration is a crucial load balancing metric that involves
moving active tasks from one physical machine to another with likely different design.
Therefore, it is necessary to save the task’s current state and convalesce it on the
remote host.

3.2 Task Deployment Policy

To reallocate the task that is removed from the overloaded VM, the proposed tech-
nique must identify suitable under loaded VMs. In the data centers (DC), there might
be more than one VM that can complete the task. Because of this, it is essential to con-
sider the VM that can handle the task. Let’s consider the VM’s capacity, load, degree
of imbalance and load fairness which are essential elements in identifying underloaded
VMs. The primary objective is to provide users with the services they require in the
shortest response time which is achieved by the suggested CO algorithm by taking into
account a number of factors when estimating the VM capacity, including processing
speed, bandwidth, memory etc.

3.3 Computational Model

There are some computing resources available at each data center to carry out user
tasks. The amount of time it takes for each task to complete can be used to calculate
the VM’s load. As a result, the processing times for each task vary, changing the load
on the VM. For ease of reference, Table 2 provides definitions and descriptions of the
notations used.

3.3.1 The Scheduling Optimization Model based on Constraints
and Performance

The proposed model consists of a number of data centers(DC), physical machines(PM),
virtual machines(VM), etc. Let us assume that CC is a cloud computing system, and
P stands for the number of Physical Machines, and that V stands for the number of
VMs. In Eq.1, the n number of PMs is shown.

CC = {P1, P2, Pk..., Pn} 1 < k < n (1)
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Table 2 Algorithm notations and descriptions

Notations Explanation of the notations
CC Cloud configuration
DC Data center
PM Physical machine
VM Virtual machine
P Number of Physical Machines
V Number of Virtual Machines
Pn nth number of Physical Machine
Pk kth number of Physical Machine
m Total number of virtual machines in the kth PM
T Set of tasks
t Total number of tasks
Vx Set of load balancing parameters of VMs
Rx Number of processors
MIPSx Million Instructions Per Second
Bx Bandwidth
Cx Cost of migration
Mx Amount of memory
VMcapx Virtual Machine capacity
VMLoadj Load on the jth Virtual machine
VMloadavg Average load of Virtual Machine
RCij Resource consumption
VMloadavg Average load across all VMs
VMloadmax Maximum load among all VMs
VMloadmin Minimum load among all VMs
DI Degree of imbalance
CU CPU utilization
CPUused CPU time used by the VMs
CPUtotal Total CPU time available
LF Load fairness index
PUV Processing Unit Vector
α Cost associated with executing a single instruction
L Delay cost
TUV Task Unit Vector
T Type of service
NIC Number of instructions of task
TAT Task Arrival Time
ζ Fitness function
ω1, ω2 Weights
φ Fitness Function
Υ Multi-objective Fitness Function

where Pn is denoted as the nth number of Physical Machine and Pk is denoted as
the kth number of Physical Machine. Each PM is made up of a number of VMs, as
demonstrated mathematically in Eq. 2.

V = {V1, V2, ..., Vj , .., Vm} 1 < j < m (2)

here m is the total number of VMs in the kth PM. Additionally, the cloud system
supports numerous users, as stated mathematically in Eq.3.

T = {T1, T2, ..., Ti, .., Tt} (3)
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while T is a set of tasks, t denotes the total number of tasks. The VM is given each task.
Tasks are processed in the cloud system without any issues when the VM workload
status is normal. When a VM’s workload is overloaded, a load balancing technique
(LB) is needed to move tasks from overloaded to underloaded VMs. The load balancing
parameters that are described in Eq. 4. are what the VMs are dependent on.

Vx = {Rx,MIPSx, Bx,Mx, Cx} (4)

where the number of processors Rx,MIPSx stands for Million Instructions Per Second
, the variable bandwidth Bx, the amount of memory used Mx and the cost of task
migration Cx, are all given. Each task has a different execution duration and priority
value. Additionally, tasks are distributed to the VMs based on two important criteria,
including (i) tasks with a higher priority and (ii) tasks with the shortest execution
times.

• VM capacity: The capacity of VM depends on the number of processors, MIPS,
memory and bandwidth. It is mathematically expressed as VMcap and is indicated
in Eq.5. [20] ,

VMcapx =

[(
Rx ×MIPSx ×Mx

1000

)
+Bx

]
× 1

2
(5)

By adding up the resource usage of all the tasks that have been given to a VM and
dividing the result by the VM’s capacity (Eq.5), Eq.6 determines the load on the
VM.This yields a normalized load value, indicating the extent to which the VM’s
capacity (Eq.6) is being utilized.

VMloadj =

∑t
i=1 RCij

VMcap
(6)

Here, the load on the jth VM is denoted by VMloadj and the resource use of the ith

task on the jth VM is indicated by the RCij .The total number of tasks allocated to
the jth VM is t and the jth VM’s capacity is denoted by VMcapx.

• Task processing execution time of a VM: It is the total of all the tasks’
execution times that are currently executing on the virtual machine. Eq.7 can be
used to determine the task processing execution time TaskProT ime(tij) on vj of
task ti.

TaskProT ime(tij) =
length(ti)

ProcessorRate(vj)
(7)

where the length of the task is expressed in terms of the number of instructions
(millioninstructions), and length(ti), is the length of the ith task. The processing
speed of the jth VM in the cloud is denoted by ProcessorRate(vj).

• Degree of imbalance: It measures how workload is distributed among VMs based
on their execution capabilities. A lower DI value indicates a more balanced load
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distribution. The formula 8 is used to determine DI:

DI =
TaskProT imemax − TaskProT imemin

TaskProT imeavg
(8)

TaskProT imemax, TaskProT imemin, and TaskProT imeavg refer to the highest,
lowest, and average completion times, respectively, for the different virtual machines.
Let, Eq.9 denotes as a set of task processing execution time of m VMs.

TaskProT ime = {TaskProT ime1, TaskProT ime2, ..., TaskProT imem} (9)

The numerator of Eq.8 calculates the maximum completion time difference between
m heterogeneous VMs which can be expressed using Eq.10,

TaskProT ime(dif)max = TaskProT imemax − TaskProT imemin (10)

where TaskProT imemax =max{TaskProT ime1,TaskProT ime2,...,TaskProT imem}
and TaskProT imemin =min{TaskProT ime1,TaskProT ime2,...,TaskProT imem}
denote maximum completion time, minimum completion time, respectively. Thus,
we can deduce that:

– If TaskProT ime(dif)max is extremely high, then TaskProT ime(dif)max is like-
wise extremely high, and some virtual machines are overloaded and underloaded.

• Load fairness : Determining load fairness usually entails determining how equi-
tably the workloads or computational tasks are allocated among various node in
cloud. We have used the formula to calculate load fairness based on coefficient of
variation (CV).To estimate load fairness the following steps are performed:
Determine the Average Load : Eq.11 finds out the average load across all VMs where
m is the total number of VMs.

VMloadavg =

∑m
j=1 VMloadj

m
(11)

Compute Standard Deviation(σ): To calculate the dispersion, the loads’ standard
deviation is estimated using Eq.12,

σ =

√√√√ 1

m

m∑
j=1

(VMloadj − VMloadavg)2 (12)

Determine the Coefficient of Variation (CV): Using Eq.13 is determined,

CV =
σ

VMloadavg
(13)

Load fairness index has a range of 0 to 1, where 1 denotes maximum fairness (dis-
tribution of loads equally) and a value of 0 denotes total unfairness (one resource
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is overutilized).For example, a high degree of load fairness among the resources is
indicated by a load fairness index of 0.8 which is close to 1.

3.3.2 Calculation of Fitness Function

The Proposed algorithm for task scheduling in cloud computing leverages the princi-
ples of multi-objective scheduling methods.The suggested approach uses two objective
functions— Eq.16 and Eq.19 —to calculate the appropriateness requirements.Using
this method, a multi-objective optimization problem is reduced to a single objective
with weights that represent the decision maker’s preferences among the objectives.

1. Despite the fact that cloud computing is dynamic, the load balancing issue men-
tioned earlier can be solved by allocating N tasks submitted by cloud users to M
cloud processing units at any given instance. For each processing unit, a processing
unit vector (PUV ) indicating the processing unit utilisation status will be present.
The components of this vector are MIPS,α indicates expense associated with exe-
cuting a single instruction and L, which stands for Delay Cost. The delay cost is an
estimation of the fine that a cloud service provider (CSP) must impose on a client
if the task takes longer than the CSP’s allotted timeframe. PUV is referred to as
Eq. 14,

PUV = Ψ(MIPS, α, L) (14)

Similar to above, each task that a cloud user submits can be depicted by a task
unit vector (TUV ). The worst-case completion time (ωc) represents the minimal
duration necessary for a processing unit to finish the task. Therefore, Eq. 15 can
be used to represent the attribute of various tasks.

TUV = Φ(T,NIC, TAT, ωc) (15)

where T is the type of service, such as Platform-as-a-Service (PAAS), Infrastruc-
ture as a Service (IAAS), or Software as a Service (SAAS), that is required to
complete the task (PAAS). The NIC stands for the task’s number of instructions.
The processor decides how many instructions are needed to complete the task. As
measured by the wall clock, the task’s arrival time (TAT ) is the time it first entered
the system. The fitness function ζ must be minimised by the cloud service provider
when distributing these N tasks among M processors, as shown in Eq. 16.

ζ = ω1 × α(NIC ÷MIPS) + ω2 × L (16)

where weights ω1 and ω2 are predetermined. Choosing or maximising the weights
can be challenging; one criterion might be that the weight should increase the more
general the factor is. The preference or weight users give to one factor over another
is another example of logic. The latter strategy has been used in this instance,
and the optimization process is then carried out using the provided set of weights.
When the weights are considered, ω1 = 0.8 and ω2 = 0.2, the sum equals 1.

2. The second objective is specified in terms of makespan, the longest time a vir-
tual machine can take to complete all of its input tasks.The makespan determines
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the task’s execution time, which varies for each VM. When using multi-objective
scheduling techniques, the makespan is a helpful factor that can shorten task execu-
tion times and enable early task completion. In the event that both the maximum
execution time value and the makespan value are large, the system is deemed to have
inadequately dispersed tasks among the VMs. On the other hand, the makespan
value is also low if the maximum execution time value is low. MakespanMax Eq.
17, which can be computed using Eq.7, is the maximum value of all VM’s execution
duration.

MakespanMax = Max(TaskProT ime(vj)), 1 ≤ i ≤ m (17)

The lower bound of makespan, or the least amount of time the system needs to
finish all tasks, is called MakespanMin, Eq. 18 is used to compute MakespanMin.

MakespanMin = Min(TaskProT ime(vj)), 1 ≤ i ≤ m (18)

Fitness function in terms of makespan (φ) can be calculated by Eq.19.

φ =
MakespanMin

MakespanMax
(19)

The weighted average of each individual fitness function is used to produce the
fitness function. Eq. 20 displays the suggested fitness function Υ.

Υ = (ϕ1 × ζ) + (ϕ2 × φ) (20)

where ϕ1, ϕ2 and ϕ ∈ [0, 1] are the balance coefficients. A better solution is
obtained by maximising the fitness function Υ.

3.3.3 Task Migration in proposed model

The task scheduler should trigger load balancing when it determines that balancing the
load is necessary. Load balancing involves identifying overloaded VMs, understanding
the demand (load requirements), locating underloaded VMs, and assessing the avail-
able supply (offered load). To queue removed tasks from overloaded VMs effectively,
it is important to first determine their priority and then choose the best VM for them.
Tasks that were previously removed from overloaded VMs (host’s eggs) also assist in
choosing the optimal low-loaded VM (cuckoo’s eggs), with Lévy flights proving to be
more effective for search tasks than a straightforward random walk.After completing
the load balancing task, the cuckoo searches for the best nest with high-quality eggs,
which are similar to the host bird’s eggs, for the next task. Consequently, high-priority
tasks will be distributed to the machine with the least number of existing high-priority
tasks.When a high-priority task is submitted to an underloaded machine, it must be
evaluated along with all other high-priority tasks that have already been allocated to
the VMs. Table 3 illustrates how the cloud environment was created in imitation of
cuckoo birds, which used to deposit their eggs in other birds’ nests. The proposed
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Table 3 Cuckoo behavior for task migration in cloud environment

Cuckoo Search Cloud Computing System
Host Nests Cloudlets(Data centers)
Host’s egg Virtual Machine
Cuckoo searches Host Nests with more similar host
bird eggs(High quality eggs)

Mapping Cloudlets to VM

Cuckoo getting worn out by searching host nest with
high quality eggs

VM is overloaded

Cuckoo searches for a new host nest Transferring the task from a heavily
loaded VM to a lightly loaded VM

Cuckoo Optimizer is used to examine the virtual machines (VMs) and determine which
ones would be optimal for taking on more work. To guarantee optimal performance,
this entails assessing the capacity and present load of each virtual machine using Eq.5
and Eq.6 respectively.

3.3.4 Task Scheduling using proposed technique in a Dynamic
Cloud Environment

Task scheduling algorithms need to be extremely flexible in order to adjust to changing
conditions in a dynamic cloud environment. Adaptive methods and real-time modifica-
tions allow metaheuristic algorithms, such as Cuckoo Optimization, to be customized
to tackle dynamic workloads.The proposed algorithm includes a task prioritization
mechanism that ranks tasks based on urgency, deadlines, and resource requirements.
Cuckoo Optimization is utilized for its ability to efficiently explore and exploit solu-
tions, making it well-suited for dynamic environments by adjusting parameters like
step size and discovery rates. Resource availability is continuously monitored, and
scheduling decisions are made in real-time according to the current state of the environ-
ment. To manage task scheduling effectively in a dynamic cloud environment, the task
schedule is periodically reevaluated to account for newly arrived tasks and updated
resource information.

3.4 Cuckoo Optimization Algorithm

The CO algorithm employs Lévy flights, enabling extensive, long-range movements
which enhances the exploration of the search space and aids in avoiding local min-
ima.By combining global search capability with local refinement, the CO algorithm
typically converges more quickly to optimal solutions than Genetic Algorithms, Par-
ticle Swarm Optimization etc. This rapid convergence is especially advantageous in
dynamic cloud environments where swift decision-making is crucial.The CO algo-
rithm can adeptly manage both hard and soft constraints in optimization problems,
which is essential in cloud computing to meet resource constraints and quality of ser-
vice requirements. For a variety of cloud computing optimization issues, the proposed
method outperforms other metaheuristic algorithms due to its strengths in balancing
exploration and exploitation, quick convergence, simplicity, resilience, and effective
management of constraints. The aggressive reproductive strategy cuckoo birds used
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to lay their eggs in other birds’ nests is the foundation of this metaheuristic. The cre-
ation of the Cuckoo Optimization algorithm, which has a population of eggs or nests,
was motivated by the unique way of life and reproduction strategy. The new solution
describes the cuckoo eggs, whereas the solutions represent each egg in the nest. If the
host egg is very similar to the cuckoo egg, the fitness function for the host egg needs
to be calculated in the solutions. The inferior solution is swapped out for a superior
one in the nest (cuckoo).

The following rules are part of the Cuckoo Optimization algorithm:

• A cuckoo can only lay one egg at a time, and it can be dropped into any nest.

• The best nest, which will be passed down to the following generation, is one with
high-quality eggs.

• Since there are a fixed number of host nests, the probability of the host species is
used to predict the egg that a cuckoo would lay. The host species will either destroy
the egg in this situation or leave the nest.

• Take into account P [0, 1] as the likelihood that an alien egg will be found in a host
bird’s nest.

For generating a new solution X(τ + 1), a levy flight is performed (Eq.21),

X(τ + 1) = X(τ) + ρ× τ−γ (21)

Where ρ > 0 represents the step size and is related to the size of the problem under
consideration and (1 < γ ≤ 3).

The proposed algorithm 1 is as given below:
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Algorithm 1 Cuckoo Optimization Algorithm

Require: n represents the population size
Require: Input: List of VMs, List of Tasks

Step 1: Randomly initialize a set of population of n hosts (processing units).
[Start].

Step 2: Using Eq.20 [Fitness], determine the fitness value of each solution.
Step 3: Take action while either the maximum number of iterations is reached

or the best solution is identified.
Step 3(a): Choose a cuckoo at random, let’s say x, and create a new solution

using levy flights.
Step 3(b): Evaluate fitness using Υ.
Step 3(c): Pick one nest (let’s say y) at random from n nest.

if (Υ(x) ≥ Υ(y)) then Replace y by the new solution x
end if

Step 3(e): Discard or abandon a fraction(Pm) of worse nests.
Step 3(f): Create fresh solutions at random using cuckoos(Build a new ones at

new locations via Levy flight (Eq.21) .
Step 3(g): Evaluate the fitness.
Step 3(h): Keep the better solutions.
Step 3(i): Test the end condition [Test].
Step 4: Compare the solutions to find the one that is currently the best (optimal

VM).
Step 5: End.

3.5 Complexity of the Algorithm

Any algorithm’s complexity study comprises both spatial and computational com-
plexity analyses (time and space complexity analyses).The algorithm’s complexity is
determined by taking into account the search dimension factor d and a population
of size n.Each population member requires O(d) operations, leading to a complex-
ity of O(n × d) per iteration.The complexity shown above is for a single iteration;
nevertheless, CO often executes over a number of iterations. Hence, the maximum
number of iterations mmax, determines the overall complexity. Therefore, the total
time complexity of the algorithm G is Eq.22,

G = O(n× d×mmax) (22)

The population size n and search dimension d have the greatest effects on space
complexity, so the algorithm’s space complexity is O(n× d). The table 4 shows the

4 Simulation Results and Analysis

In CloudAnalyst [21], the proposed algorithm is simulated using the case of a social
media network like Facebook.
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Existing Algo-
rithms used in Task
scheduling

Complexity Parameters

Genetic Algo-
rithm(GA)

O(g × d× n) g=Number of generation, d=Dimension of the Prob-
lem(No. of task and VMs), n=population size

Ant Colony Optimiza-
tion(ACO)

O(g × d× n2) g=Number of iteration, d=Dimension of the Problem, n=
Number of ants

Particle Swarm Opti-
mization(PSO)

O(g × d× n) g=Number of iteration, d=Dimension of the Problem, n=
Number of particles

Artificial Bee
Colony(ABC)

O(g × d× n) g=Number of iteration, d=Dimension of the Problem, n=
Number of bees

Table 4 Comparison of Time Complexities of existing Meta-heuristic Task Scheduling Algorithms

4.1 Simulation Setup

Table 5 shows a hypothetical configuration used for experimentation which divides the
world into six ”Regions,” which are just the six continents. Each user base (UB) has
a single time zone assigned to it, and for each UB, a representative online user dur-
ing peak and off-peak hours has been considered. During non-peak hours, only about
one-tenth of all online users are available. The application allocates a certain number

Sl. No. User
Base

Region Online users during
peak hours

Online users during
off-peak hours

1. UB1 N.America 4,70,000 80,000
2. UB2 S.America 6,00,000 1,10,000
3. UB3 Europe 3,50,000 65,000
4. UB4 Asia 8,00,000 1,25,000
5. UB5 Africa 1,25,000 12,000
6. UB6 Oceania 1,50,000 30,500

Table 5 Configuration of Simulation Environment

of VMs to each simulated ”data center host”. Each device has 4 GB of RAM, 100 GB
of storage, 4 CPUs with a combined processing power of 10,000 MIPS, and 100 GB of
total storage. VM monitors Xen, Linux, and x86 architecture are all features of simu-
lated hosts. It has been estimated that each user request (task) calls for the execution
of 100 instructions. The proposed algorithm is tested based on a number of config-
urations listed in Table 6. In each Cloud Configuration, one DC is assumed to have
initially 25, 50, and 75 VMs (CC). Two, three, four, five, or six DCs are each considered
in Tables 7, 8, 9, 10 and 11, with a combination of 25, 50, and 75 VMs for each DC,
respectively. The tasks’ average response times are calculated and tabulated for the
proposed algorithm. The effectiveness of the suggested algorithm is evaluated in com-
parison to other existing meta-heuristic algorithms used for task scheduling , including
Particle Swarm Optimization(PSO), Ant Colony Optimization(ACO), Genetic Algo-
rithm(GA) and Stochastic Hill Climbing(SHC). Figures 1, 2, 3, 4, 5, 6 and 7 show a
comparison of the proposed technique with various scenarios and methodologies. The
uniqueness of the work is supported by the comparative analysis.
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4.2 Experimental Results

In this study the proposed Cuckoo Optimizer for task scheduling takes into account the
VMs’ bandwidth, processors’ processing power, and available memory as the number
of VMs changes, the completion time of tasks is reduced.

Sl.
No.

CC DC specifica-
tion

RT in ms
For CO

RT in ms
For PSO

RT in ms
For ACO

RT in ms
For GA

RT in ms
for SHC

1. CC1 One DC with
25 VMs

327.88 328.02 328.43 328.75 329.02

2. CC2 One DC with
50 VMs

327.30 327.96 328.87 328.42 329

3. CC3 One DC with
75 VMs

325 325.97 326.84 327.04 329.34

Table 6 Simulation scenario and calculated overall average response time (RT) using One DC

Fig. 1 Performance analysis of proposed CO with PSO, ACO, GA and SHC Result using One DC

4.2.1 Response Time

Shorter response time (RT) is achieved using the suggested technique, as shown
in Tables 6, 7, 8, 9, 10 and 11. Additionally, the Cuckoo Optimization algorithm
outperforms the existing metaheuristics like PSO, ACO, GA and SHC.

Reduce Response Time with high bandwidth utilization: When the number of VMs
grows, the processing load is concentrated on a physical machine in suboptimal
systems, increasing the load on it and the likelihood of overload.

Convergence time to the optimal set of solutions: For a method that can reach
its optimal solution more quickly, there is no processing overhead incurred by the
scheduling machine. In CO, the time required to find the best solution is linear, and
as more VMs are added, the growth rate of this time decreases. In GA, the longer it
takes to reach the best solution, the larger the problem dimensions are.
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Sl.
No.

CC DC specifica-
tion

RT in ms
For CO

RT in ms
for PSO

RT in ms
For ACO

RT in ms
For GA

RT in ms
for SHC

1. CC1 Two DC with
25 VMs each

359.30 359.93 360.12 360.77 365.44

2. CC2 Two DC with
50 VMs each

354.44 354.97 355.43 355.72 360.15

3. CC3 Two DC with
75 VMs each

354.10 354.65 354.92 355.32 359.73

4. CC4 Two DC with
25,50 VMs

349.05 349.85 350.23 350.58 356.72

5. CC5 Two DC with
25,75 VMs

350.04 350.71 350.86 351.56 357.23

6. CC6 Two DC with
50,75 VMs

350.06 350.83 351.43 352.01 357.04

Table 7 Simulation scenario and calculated overall average response time(RT) using Two DCs

Fig. 2 Performance analysis of proposed CO with PSO, ACO, GA and SHC Result using Two DCs

Sl.
No.

CC DC speci-
fication

RT in ms
For CO

RT in ms
For PSO

RT in ms
For ACO

RT in ms
For GA

RT in ms
for SHC

1. CC1 DC with 25
VMs each

348.10 349.11 349.97 350.32 356.82

2. CC2 DC with 50
VMs each

347.15 349.34 349.92 350.19 355.25

3. CC3 DC with 75
VMs each

344.05 345.21 345.67 346.01 350.73

4. CC4 DC with
25,50,75
VMs

341.95 343.82 344.65 345.98 350.01

Table 8 Simulation scenario and calculated overall average response time(RT) using Three DCs
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Fig. 3 Performance analysis of proposed CO with PSO, ACO, GA and SHC Result using Three DCs

Sl.
No.

CC DC speci-
fication

RT in ms
For CO

RT in ms
For POS

RT in ms
For ACO

RT in ms
For GA

RT in ms
for SHC

1. CC1 DC with 25
VMs each

344.23 346.43 347.77 348.85 354.35

2. CC2 DC with 50
VMs each

341.08 343.56 344.89 345.54 350.71

3. CC3 DC with 75
VMs each

336.11 338.02 338.93 340.65 346.46

4. CC4 DC with
25,50,75VMs

332.76 334.61 336.23 337.88 344.31

Table 9 Simulation scenario and calculated overall average response time (RT) in (ms) using Four DC

Sl.
No.

CC DC speci-
fication

RT in ms
For CO

RT in ms
PSO

RT in ms
For ACO

RT in ms
For GA

RT in ms
for SHC

1. CC1 DC with 25
VMs each

332.45 334.01 334.98 335.64 342.86

2. CC2 DC with 50
VMs each

324.30 324.93 325.87 326.02 332.84

3. CC3 DC with 75
VMs each

319.54 320.79 321.86 322.93 329.46

4. CC4 DC with
25,50,75VMs

316.35 317.59 318.66 319.98 326.64

Table 10 Simulation scenario and calculated overall average response time(RT) using Five DCs

4.2.2 Average Processing Time

Processing time(PT) is the amount of time a DC needs for processing a user-generated
request. Comparative analysis reveals that proposed technique responds to requests
assigned to it more quickly than existing mechanisms. The average PT taken by DC1,
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Fig. 4 Performance analysis of proposed CO with PSO, ACO, GA and SHC Result using Four DCs

Fig. 5 Performance analysis of proposed CO with PSO, ACO, GA and SHC Result using Five DCs

DC2, DC3 and DC4 using CO is less than PSO, ACO, GA and SHC. Figure 7 compares
the average PT for each data center for CO, PSO, ACO, GA and SHC.

4.2.3 Degree of Imbalance

Fig. 8 illustrates the degree of imbalance (DOI) among VMs both prior to and fol-
lowing load balancing using proposed algorithm. In this figure, the X-axis denotes the
number of cloudlets, while the Y-axis indicates the degree of imbalance. The results
demonstrate that the proposed algorithm effectively distributes the load among VMs,
significantly reducing the imbalance.
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Sl.
No.

CC DC speci-
fication

RT in ms
For CO

RT in ms
For PSO

RT in ms
For ACO

RT in ms
For GA

RT in ms
for SHC

1. CC1 DC with 25
VMs each

326.32 328.02 328.78 332.54 336.96

2. CC2 DC with 50
VMs each

320.24 322.04 322.83 323.01 331.56

3. CC3 DC with 75
VMs each

315.09 317.32 319.48 321.54 327.78

4. CC4 DC with
25,50,75VMs

309.35 311.6 314.02 315.33 323.56

Table 11 Simulation scenario and calculated overall average response time (RT) using Six DCs

Fig. 6 Performance analysis of proposed CO with PSO, ACO, GA and SHC Result using Six DCs

4.2.4 Load fairness

A significant improvement of load fairness, defined in sub-section 3.3.1, is observed
using the proposed technique. The comparison of load fairness is shown in Figure 9,
where the load fairness is represented by the Y-axis and the X-axis indicates CO, PSO,
ACO, GA, and SHC.

5 Conclusion and future work

In particular, task scheduling is an NP-hard problem, making finding an optimal solu-
tion either impossible or impractical. Heuristics are crucial to speed up the process of
locating a workable solution. In this paper, a metaheuristic based on Cuckoo Optimiza-
tion (CO) is introduced for task scheduling to balance workload in a cloud computing
architecture. According to the findings of a thorough analysis, the recommended task
scheduling strategy not only outperforms the current optimization algorithms, but also
ensures that the QoS prerequisites of the customer tasks are met. Although in this case
fault tolerance issues and lowering energy consumption are not taken into account.
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Fig. 7 Average Processing Time Comparison

Fig. 8 Measurement of Degree of Imbalance before and after using CO

The pheromone value can still be calculated while taking into account fault tolerance
and different function variations. Also as future work, an adaptive CO algorithms can
be developed which is capable of learning and adapting to shifting workloads and
resource availability over time, thereby enhancing overall scheduling efficiency.
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