2024

MATHEMATICS — MINOR

Paper : MN-1

(Calculus, Geometry and Vector Analysis)

Full Marks : 75

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

বিভাগ - ক

[Calculus]

(Marks : 20)

১। যে-কোনো চারটি প্রশ্নের উত্তর দাও ঃ

(ক) মান নির্ণয় করো : $\lim_{x\to 0} \frac{\tan x - x}{x - \sin x}$ । (খ) $\frac{dy}{dx}$ -এর মান নির্ণয় করো, যখন $x = a\cos^3 t$ এবং $y = b\sin^3 t$ । (গ) $f(x) = (k^2 - 5k + 18)x + x^3 + 6x^2$ একটি ক্ষয়িষ্ণু অপেক্ষক হলে 'k' এর মান নির্ণয় করো । (গ) $y = (\sin^{-1}x)^2$ হলে দেখাও যে $(1 - x^2)y_2 - xy_1 - 2 = 0$ । (৩) $I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx = \frac{n-1}{n} I_{n-2}$ -এই Reduction formula ব্যবহার করে $\int_0^{\frac{\pi}{2}} \sin^7 x \, dx$ -এর মান নির্ণয় করো । (১) $t \in [0, \pi]$ অন্তরালে, $x = \cos 3t$, $y = \sin 3t$ বক্ররেখাটির পরিধির দৈর্ঘ্য নির্ণয় করো । (৬) $x^2 = 36y$ অধিবৃত্ত, Y-অক্ষ এবং y = 4 সরলরেখা দ্বারা পরিবেষ্ঠিত ক্ষেত্রের প্রথম পাদের ক্ষেত্রফল নির্ণয় করো ।

(ক) a এবং b-এর মান নির্ণয় করো যখন $\lim_{x\to 0} \frac{a\sin 2x - b\sin x}{x^3} = 1$ ।

(খ)
$$\frac{dy}{dx}$$
-এর মান নির্ণয় করো, যখন $\tan^{-1}\frac{y}{x} = \log(x^2 + y^2)$ ।

Please Turn Over

২×৪

(2)

B(1st Sm.)-Mathematics-H/MN-1/CCF

- (গ) Successive differentiation-এর উপর Leibnitz Theorem বিবৃত করো। যদি $y = e^{-x} \cos x$ হয়, তাহলে প্রমাণ করো বে $y_4 + 4y = 0$ ।
- (ঘ) x²/₃ + y²/₃ = a²/₃ বক্ররেখা দ্বারা পরিবেষ্ঠিত অঞ্চলের ক্ষেত্রফল নির্ণয় করো।
- (ঙ) Vectorial angle 0 থেকে θ পর্যন্ত $r = a(1 + \cos \theta)$ -এই Cardioide-এর পরিধির দৈর্ঘ্য নির্ণয় করো।
- (5) যদি $y = 2\cos x(\sin x \cos x)$ হয়, দেখাও যে $(y_{10})_0 = 2^{10}$ ।

বিভাগ - খ

[Geometry]

- (Marks : 35)
- **৩। যে-কোনো দুটি** প্রশ্নের উত্তর দাও ঃ
 - (ক) কত ডিগ্রি কোণে অক্ষণ্ডলিকে ঘোরালে $ax^2 + 2hxy + by^2 = 0$ সমীকরণ থেকে xy পদটিকে তাড়ানো যাবে তা নির্ণয় করো।

২%_×২

5×¢

- (খ) $\frac{3}{r} = 2 + 4\cos\theta$ শঙ্কুটির প্রকৃতি নির্ণয় করো এবং ওর নাভিলম্বের দৈর্ঘ্য নির্ণয় করো।
- (গ) যে গোলকটির একটি ব্যাসের দুটি প্রান্তবিন্দু (3, 4, -2) এবং (-1, 3, 2) তার সমীকরণটি নির্ণয় করো।
- (ঘ) $kx^2 + 8xy + 4y^2 + 6x + 4y + 1 = 0$ একটি কেন্দ্রবিহীন শঙ্কুচ্ছেদ (Conic) হলে k-এর মান নির্ণয় করো।
- 8। **যে-কোনো পাঁচটি** প্রশ্নের উত্তর দাও ঃ
 - (ক) $3x^2 + 2xy + 3y^2 16x + 20 = 0$ সমীকরণটিকে তার Canonical রূপে পরিবর্তিত করো এবং Conic-টির প্রকৃতি নির্ণয় করো।
 - (খ) $\frac{1}{r} = A\cos\theta + B\sin\theta$ সরলরেখাটি যদি $\frac{l}{r} = 1 + e\cos\theta$ শঙ্কুছেদটিকে স্পর্শ করে, তবে দেখাও যে $(lA - e)^2 + l^2 B^2 = 1.$
 - (গ) $\left(ct_1, \frac{c}{t_1}\right)$ বিন্দুতে $xy = c^2$ পরাবৃত্তটির অভিলম্ব যদি $\left(ct_2, \frac{c}{t_2}\right)$ বিন্দুগামী হয়, তাহলে দেখাও যে $t_1^3t_2 + 1 = 0$

 - (ঙ) একটি r ব্যাসার্ধের গোলক মূলবিন্দু (0, 0) দিয়ে যায় এবং অক্ষগুলিকে P, Q, R বিন্দুতে স্পর্শ করে। তাহলে এই PQRত্রিভূজটির ভরকেন্দ্রের সঞ্চারপথের সমীকরণ নির্ণয় করো।
 - (চ) শঙ্কুটির সমীকরণ নির্ণয় করো, যার শীর্ষবিন্দু (1, 1, 3) এবং বক্ররেখার ভিত্তি x² + 2y² = 1, z = 4

(1394)

- (ছ) যে Cylinder-এর generator গুলি $\frac{x}{-1} = \frac{y}{2} = \frac{z}{3}$ সরলরেখার সমান্তরাল এবং নির্দেশক বরুরেখা $x^2 + 4y^2 = 9, z = 1$ তার সমীকরণ লেখো।
- (জ) $4x^2-y^2 = 8z$ এই Paraboloid-টির সেই সমস্ত generating line-এর সমীকরণ নির্ণয় করো যেগুলি (-3, 2, 4) বিন্দুগামী।
- (ঝ) দেখাও যে $3x^2 + 5y^2 + 3z^2 + 2yz + 2zx + 2xy 4x 8z + 5 = 0$ সমীকরণটি একটি Central Conicoid হয় ৷ এটির কেন্দ্র নির্ণয় করো ৷

বিভাগ - গ

[Vector Analysis]

(Marks : 20)

৫। **যে-কোনো চারটি** প্রশ্নের উত্তর দাও ঃ

- (ক) $\left[\vec{\alpha}, \vec{\beta}, \vec{\gamma}\right]$ -এর মান নির্ণয় করো, যখন $\vec{\alpha} = \hat{i} + \hat{j} \hat{k}, \ \beta = 3\hat{i} \hat{k}, \ \vec{\gamma} = 2\hat{i} 3\hat{j}$
- (খ) প্রমাণ করো যে, $\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ ।
- (গ) $2\hat{i}+3\hat{j}+4\hat{k}$ ভেক্টরের সমান্তরাল সরলরেখার সমীকরণ লেখো যা $-2\hat{i}+3\hat{j}+4\hat{k}$ বিন্দুগামী।
- (ঘ) $8\hat{i}-3\hat{j}+a\hat{k}$ এবং $4\hat{i}+b\hat{j}+4\hat{k}$ ভেক্টরগুলি সমরেখ হলে a এবং b-এর মান নির্ণয় করো।
- (ঙ) $\vec{r} = 3\hat{i} + 2\hat{j} 5\hat{k}$ ভেক্টর বরাবর একটি চলমান বস্তুর কার্য নির্ণয় করো, যেখানে প্রযুক্ত বল হল $\vec{F} = 2\hat{i} \hat{j} \hat{k}$
- (চ) একটি ত্রিভুজের ক্ষেত্রফল নির্ণয় করো যার শীর্ষবিন্দুগুলি হল $\hat{i} + 3\hat{j} + 2\hat{k}, 2\hat{i} \hat{j} + \hat{k}$ এবং $-\hat{i} + 2\hat{j} + 3\hat{k}$ ।

(ছ)
$$\vec{r} = \sin t \, \hat{i} + \cos t \, \hat{j} + t \hat{k}$$
 হলে $\left| \frac{d^2 \vec{r}}{dt^2} \right|$ -এর মান নির্ণয় করো।

৬। *যে-কোনো তিনটি* প্রশ্নের উত্তর দাও ঃ

- (ক) ভেক্টর পদ্ধতিতে দেখাও যে একটি ত্রিভুজের দুটি বাহুর মধ্যবিন্দু দুটির সংযোগকারী রেখাংশ তৃতীয় বাহুর সমান্তরাল ও অর্ধেক হবে।
- (খ) (-2, 6, -6); (-3, 10, -9) এবং (-5, 0, -6) বিন্দুগামী সমতলের ভেক্টর সমীকরণ নির্ণয় করো।
- (1) $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ (with the second of the secon
- (ঘ) x = 2t², y = t² 4t, z = 3t 5 এই বক্ররেখা বরাবর একটি কণা গতিশীল। তাহলে সময় যখন t = 1, কণার গতিবেগ ও ত্বরণের components গুলি নির্ণয় করো।

Please Turn Over

২×৪

(ঙ) $\vec{P}(4,2,1)$ বলটি A(5,2,4) বিন্দুর উপর প্রয়োগ হলে B(3,-1,3) বিন্দুকে কেন্দ্র করে \vec{P} -এর টর্ক নির্ণয় করো $u_{3\%}$ Magnitude নির্ণয় করো।

(5)
$$\vec{r} = t\hat{i} + t^2\hat{j} + t^3\hat{k}$$
 宅(ア) $\int_{1}^{2} \left(\vec{r} \times \frac{d^2\vec{r}}{dt^2}\right) dt$ - এর মান নির্ণয় করো।

[English Version]

The figures in the margin indicate full marks.

Group - A

[Calculus]

(Marks : 20)

1. Answer any four questions :

(a) Find the value of
$$\lim_{x \to 0} \frac{\tan x - x}{x - \sin x}$$
.

(b) Find
$$\frac{dy}{dx}$$
, when $x = a\cos^3 t$ and $y = b\sin^3 t$.

- (c) Find the values of k in order that $f(x) = (k^2 5k + 18)x + x^3 + 6x^2$ is a decreasing function.
- (d) If $y = (\sin^{-1}x)^2$, then show that $(1 x^2)y_2 xy_1 2 = 0$.
- (e) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^{7}x \, dx$ using the reduction formula, $I_{n} = \int_{0}^{\frac{\pi}{2}} \sin^{n}x \, dx = \frac{n-1}{n} I_{n-2}$.
- (f) Find the arc length of the curve, $x = \cos 3t$, $y = \sin 3t$ over the interval $t \in [0, \pi]$.
- (g) Find the area in the first quadrant included between the parabola $x^2 = 36y$, the Y-axis and the line y = 4.
- 2. Answer any three questions :
 - (a) Find the values of a and b in order that $\lim_{x\to 0} \frac{a\sin 2x b\sin x}{x^3} = 1$.
 - (b) Find $\frac{dy}{dx}$ when $\tan^{-1}\frac{y}{x} = \log(x^2 + y^2)$.
 - (c) State Leibnitz Theorem on successive differentiation. If $y = e^{-x} \cos x$, then prove that $y_4 + 4y = 0$.

4×3

(5)

B(1st Sm.)-Mathematics-H/MN-1/CCF

(d) Find the area enclosed by the curve, $x^{\overline{3}} + y^{\overline{3}} = a^{\overline{3}}$.

(e) Find the length of the arc of the cardioide $r = a(1 + \cos\theta)$ from the vectorial angle 0 to θ .

2 2 2

(f) If $y = 2\cos x(\sin x - \cos x)$, show that $(y_{10})_0 = 2^{10}$.

Group - B [Geometry] (Marks : 35)

3. Answer any two questions :

- (a) Find the angle through which the axes be turned to remove the term xy from the equation, $ax^2 + 2hxy + by^2 = 0.$
- (b) Determine the nature of the conic, $\frac{3}{r} = 2 + 4\cos\theta$ and also find the length of its latus rectum.
- (c) Find the equation of the sphere whose extremities of a diameter are (3, 4, -2) and (-1, 3, 2).
- (d) Find the value of k for which the equation, $kx^2 + 8xy + 4y^2 + 6x + 4y + 1 = 0$ represents a conic without any centre.
- 4. Answer any five questions :
 - (a) Reduce the equation, $3x^2 + 2xy + 3y^2 16x + 20 = 0$ to its canonical form and determine the nature of the conic.
 - (b) If the straight line, $\frac{1}{r} = A\cos\theta + B\sin\theta$ touches the conic, $\frac{l}{r} = 1 + e\cos\theta$, then show that $(lA e)^2 + l^2B^2 = 1$.
 - (c) If the normal to the hyperbola, $xy = c^2$ at the point $\left(ct_1, \frac{c}{t_1}\right)$ meet it again at $\left(ct_2, \frac{c}{t_2}\right)$, then show

that $t_1^3 t_2 + 1 = 0$.

(d) Find the equation of the locus of the points of intersection of mutually perpendicular tangents to

the ellipse,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

- (e) A sphere of radius r passes through the origin (0, 0) and touches the axes in P, Q, R. Find the locus of the centroid of the triangle PQR.
- (f) Find the equation of the cone with vertex (1, 1, 3) and guiding curve $x^2 + 2y^2 = 1$, z = 4.

Please Turn Over

21/2×2

- (g) Find the equation of the cylinder whose generators are parallel to the line, $\frac{x}{-1} = \frac{y}{2} = \frac{z}{3}$ and the guiding curve is the ellipse, $x^2 + 4y^2 = 9$, z = 1.
- (h) Find the equations of the generating lines of the paraboloid $4x^2-y^2 = 8z$ passing through the point (-3, 2, 4).
- (i) Show that the quadric surface given by the equation

$$3x^2 + 5y^2 + 3z^2 + 2yz + 2zx + 2xy - 4x - 8z + 5 = 0$$

is a central conicoid. Find its centre.

Group - C

[Vector Analysis]

(Marks : 20)

- 5. Answer any four questions :
 - (a) If $\vec{\alpha} = \hat{i} + \hat{j} \hat{k}, \beta = 3\hat{i} \hat{k}, \vec{\gamma} = 2\hat{i} 3\hat{j}, \text{ find } \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma}\right].$
 - (b) Prove that $\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$.
 - (c) Find the vector equation of the line passing through the point, $-2\hat{i} + 3\hat{j} + 4\hat{k}$ and parallel to the vector, $2\hat{i} + 3\hat{j} + 4\hat{k}$.

- (d) Find the values of a and b for which the vectors $8\hat{i} 3\hat{j} + a\hat{k}$ and $4\hat{i} + b\hat{j} + 4\hat{k}$ are collinear.
- (e) Find the work-done in moving an object along a vector $\vec{r} = 3\hat{i} + 2\hat{j} 5\hat{k}$ if the applied force is $\vec{F} = 2\hat{i} - \hat{j} - \hat{k}.$
- (f) Find the area of the triangle having vertices at $\hat{i} + 3\hat{j} + 2\hat{k}$, $2\hat{i} \hat{j} + \hat{k}$ and $-\hat{i} + 2\hat{j} + 3\hat{k}$.
- (g) If $\vec{r} = \sin t \,\hat{i} + \cos t \,\hat{j} + t \hat{k}$, then find the value of $\left| \frac{d^2 \vec{r}}{dt^2} \right|$.
- 6. Answer any three questions :
 - (a) Show by vector method that the line joining the middle points of two sides of a triangle is parallel 4×3

 - (b) Find the vector equation of a plane through the three points (-2, 6, -6); (-3, 10, -9) and (-5, 0, -6). (c) $\vec{\alpha}$, $\vec{\beta}$ and $\vec{\gamma}$ are three non-coplanar vectors, then show that $(\vec{\alpha} - \vec{\beta}) \cdot (\vec{\beta} - \vec{\gamma}) \times (\vec{\gamma} - \vec{\alpha}) = -2[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]$.

- (d) A particle moves along the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5. Find the components of velocity and acceleration at time t = 1.
- (e) Find the torque about the point B(3, -1, 3) of a force $\vec{P}(4, 2, 1)$ passing through the point A(5, 2, 4). Find the magnitude of the torque.

(f) If
$$\vec{r} = t\hat{i} + t^2\hat{j} + t^3\hat{k}$$
, then find $\int_{1}^{2} \left(\vec{r} \times \frac{d^2\vec{r}}{dt^2}\right) dt$.