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MATHEMATICS — GENERAL
Paper : GE/CC-2
Full Marks : 65

Candidates are required to give their answers in their own words
as far as practicable.
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[English Version]
The figures in the margin indicate Jull marks.
Group - A
(Marks : 10)
1. Choose the correct alternatives : 1%10
LRoenn s,
(a) The sequence {x,}, where x, =-Esm—2- is
(i) convergent (i) divergent
(i) oscillatory (iv) None of these.
] L b e
(b) The series len —1+E+Z+§+...+2"_1 S ee
(i) convergent (i) divergent
(i) oscillatory (iv) None of these.

(c) Lagrange’s Mean Value Theorem is obtained from Cauchy’s Mean Value Theorem for two functions
f(x) and g(x) by putting g(x) is equal to

D (i) x
(i) 1 (iv) None of these.
- ; icth % :
(d) The general solution of the ordinary differential equation :{—2+9 y=0 is
X
(i) y=Ae3*+ Be3x (i) (4+ Bx)e3x
(iii) y = (Acosx + Bsinx) (iv) y=(Acos3x + Bsin3x)

(e) If for two vectors @ and b, |@+b|=|Ga-b|, then @ and } are

(i) Collinear (ii) Parallel
(iii) Orthogonal (iv) None of these.

(f) In a Boolean Algebra (a+b+c)'=

Q) a'b'c () a' +b +c'
(i) o’ +(b+c) (iv) None of these.
4
(g) The value of xllr::o = is
(@ 1 (i) 0
(iii) ~1 (iv) co.
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(h) If f(x)=x°-5x*+5x3+ 10, x € R, then

(i) f has maximum at x=0

(i) / has minimum at x=0

(iii) f has neither maximum nor minimum at x =0
(iv) None of these.

(i) The partial differential equation obtained by eliminating the arbitrary constant a(#0) and b(#0) from
the function z = (x—a)? + (y - b)? is

@) ptg=4z (i) p*+q>=2z
(iii) p*-q?=4z (v) p*+q*=4z
G) If n is a positive integer such that #»* + 1 is a prime, then

@ n=1 () n=2
(i) n=3 (iv) n=>5.

Group -B

[ Differential Calculus-II]
Unit - 1
(Marks : 15)

Answer any three questions.

n+l . :
If x, = T n €N ; show that the sequence {x,} is strictly monotonic decreasing and hence prove that
n

it is convergent. 342

(a) Is Rolle’s Theorem applicable to the function eSi™ in [0, n]? Justify your answer.

R the valne of. im S
(b) Find the value o L e 342
Expand f (x) = sinx in power of x, stating the validity of the expansion. 5

(a) Give examples of two bounded sequences of which one is convergent and the other is divergent.

(b) Use Cauchy’s general principle of convergence to prove that the sequence {x,}, where
1 1

x, =l+—+—+...+ — is convergent. 243

G- 3 s 2

Find the maximum and minimum value (if exists) of the function f(x)= 4 36 5

st =4
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: Y‘ector Algebra ]
- Unit -3
a;?-" Q’Iarks : 5)

er any one question.

5
crete Mathematics |
_gMarks : 30)
tmy three questions.
;neN
5+5
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. | (8)
owin iystem of congruences :
e |

I &5 in tournament schedule for 5 teams. 5+5

theorem prove that 18! + 1 is divisible by 23. 5+5

method, prove that, (a+b)' =a'-b'.

3 circuit which represent by the Boolean expression : xyz + xyz' +xy'z+xyz.
By : 545




