2022

MATHEMATICS — HONOURS

Paper : CC-12 Full Marks : 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

- N. C. C.	Choose the correct answer	with proper justification (1	mark for right answer	r and 1 mark for justification): 2×10	
	(a) Which of the following may be order of an element of the group $S_3 \times S_3$?				
	(i) 4	(ii) 6	(iii) 9	(iv) 18	
	(b) Which of the following is the possible number of Abelian groups of order 12?				
	(i) 1	(ii) 2	(iii) 3	(iv) 4	
	(c) If (Z , +) is the additive group of all integers, then which of the following is the possible order of Aut Z ?				
	(i) Infinite	(ii) 2	(iii) 1	(iv) Greater than 2	
	(d) Which of the following is the order of any non-identity element of $\mathbb{Z}_3 \times \mathbb{Z}_3$?				
	(i) 3	(ii) 6	(iii) 9	(iv) 2	
	(e) If Z_2 and Z_3 be two groups under addition modulo 2 and 3 respectively, then which of the following is true?				
	(i) $Z_2 \times Z_2 \cong Z_4$ (iii) Both (i) and (ii) are true		(ii) $Z_2 \times Z_3 \cong Z_6$		
			(iv) None of the above is true		
	(f) If $V(F)$ is an inner product space and V^{\perp} is the orthogonal complement of V , then				
	(i) $V^{\perp} = \phi$	(ii) $V^{\perp} = \{\theta\}$	(iii) $V^{\perp} = V$	(iv) $V \cap V^{\perp} = \phi$	
	(g) If a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by $T(x, y, z) = (x + y - z, x - z, y - z)$ $\forall (x, y, z) \in \mathbb{R}^3$, then $T^*(x, y, z) =$				
	(i) $(x + y, x + z, -x - y - z)$		(ii) $(x + y, x + z, y + z)$		
	(iii) $(x + y, x + z, -x - y + z)$		(iv) $(x + y, y + z, -x - y - z)$		
	(h) Which of the following is the signature of the quadratic form $xy + yz + zx$?				
	6) 1	(ii) -1	(iii) 2	(iv) - 2	

(i) Which of the following is the dimension of the orthogonal complement of the row space of the

matrix A given by
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 3 & 5 \\ 3 & 4 & 7 \end{pmatrix}$$
?

(i) 1

(ii) 2

(iii) 3

(iv) 4

(j) The minimal polynomial of the zero linear operator on an n-dimensional vector space is

(i) x^n

(ii) x^{n-1}

(iii) x

(iv) none of these

Unit - I

(Group Theory)

2. Answer any four questions :

- (a) (i) Let G_1 and G_2 be two groups. Prove that $G_1 \times G_2$ is commutative if and only if both G_1 and G_2 are commutative.
 - (ii) Prove or disprove: Every group of order 2022 is commutative.

3+2

- (b) (i) For a group G, prove that Inn(G) is a normal subgroup of Aut(G).
 - (ii) Prove or disprove: If G is a cyclic group, then Aut(G) is also a cyclic group.

3+2

- (c) Let $f: G \to G$ be a homomorphism. If f commutes with every inner automorphism of G, then prove that
 - (i) $K = \{x \in G; f^2(x) = f(x)\}$ is a normal subgroup of G.
 - (ii) G/K is abelian.

3+2

(d) Prove that $Inn(S_3) = Aut(S_3)$.

5

- (e) (i) Let G be a group. Show that the mapping $f: G \to G$ defined by $f(a) = a^{-1}$ for all $a \in G$ is an automorphism if and only if G is an abelian group.
 - (ii) Show that there exist groups G and H such that Aut(G) = Aut(H) though $G \neq H$. 3+2
- (f) (i) Prove that there is no finite group G such that $Aut(G) \cong Z_p$ where p is an odd prime.
 - (ii) Let G be a group such that $Z(G) = \{e\}$. Prove that $Z(Aut G) = \{id\}$.

3+2

- (g) (i) Show that any abelian group of order 105 contains a cyclic subgroup of order 15.
 - (ii) Prove that every non-cyclic group of order p^2 , p is a prime number, is isomorphic to external direct product of two cyclic groups each of order p.

Unit - II

(Linear Algebra)

3. Answer any five questions:

- (a) (i) If V(F) is an inner product space and A, B are two subsets of V such that $A \subset B$, then prove that $B^{\perp} \subset A^{\perp}$ where A^{\perp} and B^{\perp} are orthogonal complements of A and B respectively.
 - (ii) If $\{\beta_1, \beta_2, \dots, \beta_r\}$ be an orthogonal set of vectors in an inner product space $V(\mathbb{R})$, then prove that for any vector α in V, $\|\alpha\|^2 \ge c_1^2 + c_2^2 + \dots + c_r^2$ where c_i is the scalar component of α along β_i , $i = 1, 2, \dots, r$.
- (b) Let P_3 be the inner product space of all real polynomials of degree ≤ 3 with the inner product

$$\langle f, g \rangle = \int_{0}^{1} f(t)g(t)dt; f, g \in P_3$$
 and also let W be the subspace of P_3 with basis $\{1, t^2\}$. Find a basis for W^{\perp} .

- (c) Using Gram Schimdt orthonormalisation process, find an orthonormal basis corresponding to the basis $\{(1, 0, 1), (1, 0, -1), (0, 3, 4)\}$ in $\mathbb{R}^3(\mathbb{R})$ using standard inner product.
- (d) (i) Find the Hessian matrix of the function $f(x, y) = x^3 2xy y^6$ at (1, 2).
 - (ii) Let V be an n-dimensional vector space over the field F. Find the minimal polynomial of the identity operator $I_V: V \to V$.
- (e) Let W be a subspace of \mathbb{R}^4 spanned by (1, 2, -3, 4), (1, 3, -2, 6) and (1, 4, -1, 8). Find a basis of the annihilator of W.
- (f) Find the Jordan normal form of $\begin{pmatrix} 4 & -1 & 1 \\ 4 & 0 & 2 \\ 2 & -1 & 3 \end{pmatrix}$ over the field of reals.
- (g) Diagonalise the matrix $\begin{pmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3 \end{pmatrix}$.
- (h) Reduce the equation $9x^2 24xy + 16y^2 + 2x 11y + 16 = 0$ to its canonical form and determine the nature of the conic.