2023

MATHEMATICS — HONOURS

Paper: CC-13

(Metric Space and Complex Analysis)

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

N, R, C, Q denote the set of all natural, real, complex and rational numbers respectively. (Notations and symbols have their usual meanings.)

- 1. Answer all the following multiple choice questions. For each question 1 mark for choosing correct option and 1 mark for justification: 2×10
 - (a) Which one of the following is not a metric on C[0, 1], where C[0, 1] is the collection of all real valued continuous functions defined on [0, 1]?

(i)
$$d(x,y) = \sup_{0 \le t \le 1} |x(t) - y(t)|$$
 (ii) $d(x,y) = \inf_{0 \le t \le 1} |x(t) - y(t)|$

(ii)
$$d(x, y) = \inf_{0 \le t \le 1} |x(t) - y(t)|$$

(iii)
$$d(x,y) = \int_{0}^{1} |x(t) - y(t)| dt$$

(iii)
$$d(x,y) = \int_{0}^{1} |x(t) - y(t)| dt$$
 (iv) $d(x,y) = \left\{ \int_{0}^{1} (x(t) - y(t))^{2} dt \right\}^{\frac{1}{2}}$.

- (b) Let $Y = [1, 2] \cup (3, 4)$. We consider Y as metric subspace of the real line. Then
 - (i) [1, 2] is closed in Y but not open in Y
 - (ii) (3, 4) is open in Y but not closed in Y
 - (iii) [1, 2] is closed in Y as well as open in Y
 - (iv) None of these.
- (c) Let X be an infinite set and $d: X \times X \to \mathbb{N} \cup \{0\}$ be a metric on X. Then every singleton set in (X, d) is
 - (i) open but not necessarily closed
- (ii) closed but not necessarily open
- (iii) both open and closed
- (iv) neither open nor closed.
- (d) Choose the set Y which as a subspace of \mathbb{R}^2 , with usual metric, is not complete.

(i)
$$Y = \{(x, y) \in \mathbb{R}^2 : y = x\}$$

(ii)
$$Y = \mathbb{N} \times \mathbb{N}$$

(iii)
$$Y = \{(x, y) \in \mathbb{R}^2 : |x| = 1$$

(iii)
$$Y = \{(x, y) \in \mathbb{R}^2 : |x| = 1\}$$
 (iv) $Y = \left\{ \left(\frac{1}{m}, \frac{1}{n}\right) \in \mathbb{R}^2 : m, n \in \mathbb{N} \right\}$.

- (e) The set $\left\{ \frac{x^2}{1+x^2} : x \in \mathbb{R} \right\}$ is
 - (i) connected but not compact in (\mathbb{R}, d_u)
 - (ii) compact but not connected in (\mathbb{R}, d_u)
 - (iii) compact and connected in (\mathbb{R}, d_u)
 - (iv) Neither compact nor connected in (\mathbb{R}, d_u) .

[Here d_u denotes the usual metric on \mathbb{R}].

- (f) Under the transformation $w = \frac{1}{z}$, the image of the region $\{z = x + iy : x > 1\}$ is transformed into
 - (i) a circle

- (ii) a half plane
- (iii) interior of a circle
- (iv) exterior of a circle.
- (g) Let $f(z) = |z|^2 z$, $z \in \mathbb{C}$. Which of the following is true?
 - (i) f is nowhere differentiable in \mathbb{C}
 - (ii) f is differentiable everywhere in \mathbb{C}
 - (iii) f is differentiable everywhere in \mathbb{C} except z = 0
 - (iv) f is differentiable only at z = 0 in \mathbb{C} .
- (h) The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{z^{4n}}{4n+1}$ is
 - (i) 4

(ii) 1

(iii) ½

- (iv) 1/4.
- (i) What is the value of $\int_{|z|=1}^{\infty} \frac{e^z}{z^2 5z + 6} dz$?
 - (i) 0

(ii) $2\pi e^3 i$

(iii) πie3

- (iv) $2\pi i$.
- (j) What is the maximum possible number of fixed points of a non-identity Mobius transformation in \mathbb{C}_{∞} ?
 - (i) 0

(ii) 1

(iii) 2

(iv) infinite.

Unit - 1

(Metric Space)

Answer any five questions.

- 2. Let (X, d) be a metric space and let $A, B \subseteq X$. Then show that
 - (a) diam $(A \cup B) \le \operatorname{diam}(A) + \operatorname{diam}(B) + d(A, B)$

(b) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.

3+2

- 3. Let (Y, d_Y) be a metric subspace of a metric space (X, d). Let $A \subseteq Y$. Prove that interior of A in (X, d) is a subset of interior of A in (Y, d_Y) . Give example to show that the equality may not hold. 3+2
- 4. Show that a sequence $\{x_n\}$ in (C[0,1], d), where C[0,1] has the usual meaning and $d(x,y) = \sup_{0 \le t \le 1} |x(t) y(t)|$, $\forall x, y \in C[0,1]$, converges to a function $z \in C[0,1]$ if and only if the sequence $\{x_n\}$ converges uniformly to z on [0,1].
- 5. Let (X, d) be a complete metric space and $\{F_n\}$ be a sequence of non-empty closed sets such that $F_{n+1} \subseteq F_n$ for all n. If $\operatorname{diam}(F_n) \to 0$ as $n \to \infty$, then prove that $\bigcap_{n=1}^{\infty} F_n$ contains exactly one element. Is the statement valid for (\mathbb{Q}, d_u) ? $(d_u$ denotes the usual metric).
- **6.** (a) Let (X, d_X) , (Y, d_Y) be two metric spaces and $A \subseteq X$. For a function $f: A \to Y$ and $a \in A$, it is given that whenever a sequence $\{x_n\}$ in A converges to 'a', the sequence $\{f(x_n)\}$ converges to f(a). Prove that f is continuous at 'a'.
 - (b) Let (X, d) be a metric space and $A \subseteq X$. Define $f: X \to \mathbb{R}$ by f(x) = d(x, A). Prove that f is uniformly continuous on X.
- 7. Let (X, d) be a metric space. Then prove that the following statements are equivalent.
 - (a) (X, d) is disconnected.
 - (b) There exists a continuous mapping of (X, d) onto the discrete two element space (X_0, d_0) .
- 8. (a) Prove that a compact subset of a metric space (X, d) is closed and bounded.
 - (b) Let $\{x_n\}$ and $\{y_n\}$ be two sequences in a metric space (X, d) such that $\{x_n\}$ is Cauchy and $\lim_{n\to\infty} d(x_n, y_n) = 0$. Show that $\{y_n\}$ is also Cauchy.
- 9. Let (X, d) be a complete metric space and let f be a contraction mapping on X. Prove that there exists one and only one point x in X such that f(x) = x.

Unit - 2

(Complex Analysis)

Answer any four questions.

- 10. (a) Show that the stereographic projections of the points Z and $\frac{1}{2}$ are reflections of each other in the equatorial plane of the Riemann sphere.
 - (b) Show that the transformation $w = \frac{1-z}{1+z}$ transforms $|w| \le 1$ into the right half plane $\text{Re}(z) \ge 0$.
- 11. (a) Check whether $\lim_{z\to 0} \frac{z}{z}$ exists or not.
 - (b) If f(z) is an analytic function, then show that $\left(\frac{\partial^2}{\partial r^2} + \frac{\partial^2}{\partial v^2}\right) |f(z)|^2 = 4 |f'(z)|^2$. 2 + 3
- 12. Let $f: G \to \mathbb{C}$, where f(x+iy) = u(x,y) + iv(x,y) be a function of a complex variable on a region G. Let u(x, y), v(x, y) be differentiable at (x_0, y_0) and let Cauchy-Riemann equations are satisfied at (x_0, y_0) . Prove that f is differentiable at $z = x_0 + iy_0$.
- 13. (a) Prove that $f(z) = e^{\overline{z}}$ is nowhere differentiable.
 - (b) If f(z) and $\overline{f(z)}$ are analytic in a region D, show that f(z) is constant in D. 2 + 3
- 14. (a) Find the bilinear transformation that maps the points $z_1 = -i$, $z_2 = 0$, $z_3 = i$ onto the points $w_1 = -1$, $w_2 = i$, $w_3 = 1$. Into what curve is the imaginary axis x = 0 transformed?
 - (b) Prove that if the origin is a fixed point of a bilinear transformation, then the transformation can be written in the form, $w = \frac{z}{cz+d}(d \neq 0)$. (3+1)+1
- 15. (a) If a power series $\sum a_n z^n$ converges for $z = z_0 \neq 0$, prove that it converges absolutely for all z such that $|z| < |z_0|$.
 - (b) Find the radius of convergence of the power series $\sum_{i=1}^{n} \left(\frac{iz-1}{2+i}\right)^n$. 2+3
- 16. (a) Evaluate $\int \frac{zdz}{(16-z^2)(z+i)}$, where C is the circle |z|=2 taken in the positive sense.
 - (b) Find the maximum value of the integral $\int_{0}^{\infty} \frac{dz}{z^2 + 4}$, where $\gamma(t) = Re^{it}$ for $0 \le t \le \pi$ and R > 2.