2023

MATHEMATICS — HONOURS

Paper: DSE-B-2.1

(Point Set Topology)

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Throughout the question, \mathbb{R} and \mathbb{N} denote respectively the set of real numbers and the set of natural numbers.

- 1. Answer all multiple choice questions. For each question, 1 mark for choosing correct option and 1 mark for justification.
 - (a) Let (X, τ) be a cofinite topological space, where X is an uncountable set. Then which of the following is false?
 - (i) Each point of X is the intersection of all of its neighbourhoods in X.
 - (ii) No two open sets in X are disjoint.
 - (iii) $\tau \subseteq \tau'$, where τ' denotes the co-countable topology on X.
 - (iv) There exists a metric on X which generates the topology τ on X.
 - (b) Let (X, τ) be a topological space and A be a proper non-empty subset of X such that int $(X-A) = \phi$, (where int B denotes the interior of any subset B in X). Then which of the following is false?
 - (i) A is dense in X.
 - (ii) Every non-empty open set in X intersects A.
 - (iii) The only closed set in X containing A is X.
 - (iv) The derived set of A is an empty set.
 - (c) Let \mathbb{R} be the set of all real numbers with usual topology and $K = \{\frac{1}{n}: n = 1, 2, ...\}$. Then K is
 - (i) open in R.

- (ii) closed in R.
- (iii) both open and closed in R.
- (iv) neither open nor closed in R.
- (d) The closure of the set $A = \{2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, ...\}$ with respect to the usual topology on the set of real numbers \mathbb{R} is given by
 - (i) $A \cup \{1\}$.

(ii) $A \cup \{2\}$.

(iii) $A \cup \{\varphi\}$.

(iv) $A \cup \{3\}$.

- (e) Let $f: (\mathbb{R}, \tau_l) \to (\mathbb{R}, \tau_u)$ be defined as f(x) = x, $\forall x \in \mathbb{R}$, where τ_l , τ_u are the lower limit topology and the usual topology on \mathbb{R} respectively, then
 - (i) f is not a continuous map.
 - (ii) f is an open map.
 - (iii) f is neither continuous nor an open map.
 - (iv) f is continuous but not an open map.
- (f) Let (X, τ) be a co-countable space, where X is an uncountable set. Then which of the following is true?
 - (i) (X, τ) is a first countable space.
 - (ii) (X, τ) is a Hausdorff space.
 - (iii) There exists a convergent sequence in X whose limit is not unique.
 - (iv) A sequence $\{x_n\}$ in X is convergent if and only if there is some positive integer m such that for all $n \ge m$, $x_n = \text{constant}$.
- (g) Let $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ be a topology on $X = \{a, b, c\}$. Then X is
 - (i) compact and Hausdorff.
- (ii) compact but not Hausdorff.

(iii) only Hausdorff.

- (iv) T_1 .
- (h) A continuous function f from an infinite connected space (X, τ) to a discrete two point space $\{0, 1\}$
 - (i) must be constant.

(ii) must be non-constant.

(iii) is not closed.

- (iv) is not open.
- (i) Let (X, τ) be an uncountable compact space and (\mathbb{R}, τ_u) be the space of real numbers with the usual topology. Then which of the following is false?
 - (i) There exists a continuous map $f: X \to \mathbb{R}$ which is unbounded.
 - (ii) A map $f: X \to \mathbb{R}$ is continuous $\Rightarrow f: X \to \mathbb{R}$ is a closed map.
 - (iii) If $f: X \to \mathbb{R}$ is a continuous map then f(X) is closed in \mathbb{R} .
 - (iv) A map $f: X \to \mathbb{R}$ is continuous and $A \in \tau$ implies $f(X \setminus A)$ is compact in \mathbb{R} .
- (j) Let $X = [0, 1) \cup [2, 3]$ be the subspace of the topological space \mathbb{R} with the usual topology and

$$f: X \to \mathbb{R}$$
 be a map given by $f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ 2 & \text{if } 2 \le x \le 3. \end{cases}$

Then which of the following is true?

- (i) f is open and continuous.
- (ii) f is open but not continuous.
 - (iii) f is not open but continuous.
 - (iv) f is neither open nor continuous.

Unit - 1

(Marks: 20)

Answer any four questions.

- 2. (a) Let N be the set of natural numbers and $A_n = \{1, 2, 3, ..., n\}, n \in \mathbb{N}$. Then prove that the collector $\tau = \{A_n : n \in \mathbb{N}\} \cup \{\mathbb{N}, \phi\}$ is a topology on \mathbb{N} .
 - (b) Find the derived set of {1} in the above topological space.

3+2

- 3. (a) Prove that the lower limit topology τ_l and the upper limit topology τ_r are both strictly finer than the usual topology τ_u on the set of all real numbers \mathbb{R} .
 - (b) Prove that the lower limit topology τ_l and the upper limit topology τ_r on \mathbb{R} are non-comparable but their intersection is the usual topology τ_u on \mathbb{R} .
- 4. Define topologically equivalent metrics on a non-empty set X. Prove that the space $(X, \tau(d))$, where $\tau(d)$ is the topology induced by a metric d on a non-empty set X is homeomorphic to the space $(X, \tau(d_1))$,

where $\tau(d_1)$ is the topology induced by the metric d_1 on X, where d_1 is given by $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$, for all $x, y \in X$.

- 5. (a) Suppose (X, τ) is a topological space and (Y, τ_Y) is the subspace of (X, τ) . Prove that, for a subset A of Y, $\overline{A}^Y = \overline{A} \cap Y$, where \overline{A}^Y denotes the closure of A in (Y, τ_Y) .
 - (b) Find the boundary and interior of the set $\{(x, y) : x \in \mathbb{Q}\}$ in \mathbb{R}^2 endowed with the usual product topology.
- **6.** Prove that in a topological space (X, τ)
 - (a) the set $A \cup A'$ is the smallest closed subset containing A, where $A \subseteq X$ and A' is the derived set of A.
 - (b) Prove or disprove: $\overline{A \cap B} = \overline{A} \cap \overline{B}$, where \overline{A} denotes the closure of A in (X, τ) .
- 7. (a) Let X be a non-empty set and $B = \{\{x\} : x \in X\}$. Then prove that B is a basis for a topology on X.
 - (b) Give an example of a map from a topological space (X, τ) to another topological space (Y, τ') which is both open and closed but not continuous.
- **8.** Let (X, τ) be the topological product of a family of topological spaces $\{(X_i, \tau_i) : i = 1, 2, ..., n\}$ and $p_i : X \to X_i$ denote the *i*-th projection map $\forall i = 1, 2, ..., n$. Then prove that
 - (a) p_i is an open map $\forall i = 1, 2, ..., n$.
 - (b) the product topology τ is the smallest topology on X such that each projection map is continuous.

2+3

Unit - 2

(Marks: 10)

Answer any two questions.

- 9. (a) Give example of a topological space which is T_1 but not T_2 . Justify your answer.
 - (b) Prove that a topological space (X, τ) is T_1 if and only if every neighbourhood of any limit point p of any set $A \subseteq X$ intersects A in countably infinite number of points.
- 10. Let X be an uncountable set and p be a fixed point X. Define $\tau = \{G \subseteq X : \text{ either } p \notin G \text{ or if } p \in G \text{ then } X \setminus G \text{ is finite} \}$. Prove that (X, τ) is a topological space which is not first countable.
- 11. (a) Let (X, τ) be a topological space and \mathcal{B} a local base at $c \in X$. Prove that a sequence $\{x_n\}_n$ converges to $c \in X$ if and only if for every $B \in \mathcal{B}$, there exists a positive integer m such that for all $n \ge m$, $x_n \in B$.
 - (b) Let $f: (X, \tau_1) \to (Y, \tau_2)$ be an open, continuous surjective map, where X is first countable. Prove that Y is first countable.
- 12. (a) If (X_1, τ_1) and (X_2, τ_2) are two T_2 spaces, then prove that their product space (X, τ) is also a T_2 space.
 - (b) Let $f: (X, \tau_1) \to (Y, \tau_2)$ be a continuous map and Y be T_2 . Prove that the set $\{(x, f(x)) : x \in X\}$ is a closed set in $X \times Y$, where $X \times Y$ is endowed with the product topology.

Unit - 3

(Marks: 15)

Answer any three questions.

13. (a) Suppose (X, τ) is a topological space and $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$ (Λ is an index set) is any family of closed

subsets of X with the property that $\bigcap_{i=1}^{n} F_{\alpha_i} \neq \emptyset$ for any finite subfamily $\{F_{\alpha_i} : \alpha_i \in \Lambda, i = 1, 2, ..., n\}$

of \mathcal{F} . Prove that X is compact if and only if $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \emptyset$.

- (b) Let (X, τ_1) be a T_2 space and (X, τ_2) be compact such that $\tau_1 \subseteq \tau_2$. Prove that $\tau_1 = \tau_2$.
- 14. (a) Prove that the set of real numbers R with lower limit topology is disconnected.
 - (b) Prove that a topological space containing a dense connected set is connected.
- 15. (a) Prove that a real valued continuous function f on a compact space (X, τ) attains its greatest value.
 - (b) If K is a compact subset of a T_2 space X, then prove that K is a closed set in X. 2+3

- 16. (a) Prove that every closed and bounded interval of the real line ℝ (i.e., ℝ with the usual topology) is compact.
 - (b) Prove that each component of a topological space is closed.

3+2

- 17. (a) If every continuous real valued function on a topological space (X, τ) takes on all values between any two values that it assumes then prove that (X, τ) is connected.
 - (b) If A is a connected subset consisting of at least two points in a metric space (X, d) then prove that A is uncountable.