2022

PHYSICS — GENERAL

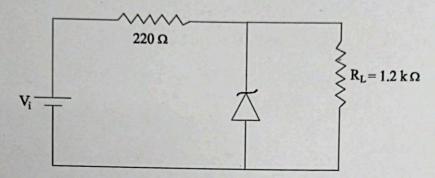
Paper: DSE-A-1 and DSE-A-2

Candidates are required to give their answers in their own words as far as practicable.

Paper: DSE-A-1
(Analog Electronics)
Full Marks: 50

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

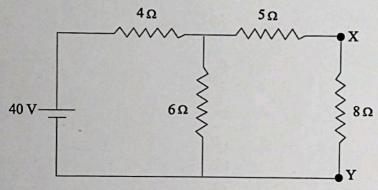
১ নং প্রশ্ন ও অন্য যে-কোনো চারটি প্রশ্নের উত্তর দাও।


১। *যে-কোনো পাঁচটি* প্রশ্নের উত্তর দাও ঃ

2x¢

- (ক) তড়িৎ বর্তনী সংক্রান্ত থেভেনিন উপপাদ্যটি বিবৃত করো।
- (খ) P-টাইপ ও N-টাইপ অর্ধপরিবাহীর মধ্যে পার্থক্য লেখো।
- (গ) সৌরকোষের কার্যনীতি লেখো।
- (ঘ) একমুখীকরণ বলতে কী বোঝো?
- (ঙ) একটি CE-মোড ট্রানজিস্টারের আউটপুট বৈশিষ্ট্যটি আঁকো।
- (চ) একটি ট্রানজিস্টার বিবর্ধকের Q-পয়েন্টের সংজ্ঞা লেখো।
- (ছ) একটি ইনভার্টিং অপারেশনাল অ্যামপ্লিফায়ারের (OPAMP) বর্তনী চিত্রটি অঙ্কন করো।
- ২। (ক) একটি ব্রিজ একমুখীকারকের বর্তনী চিত্র অঙ্কন করো এবং এর কার্যপ্রণালী ব্যাখ্যা করো।
 - (খ) সর্বোচ্চ ক্ষমতা স্থানান্তরের উপপাদ্যটি কী? এই উপপাদ্যটির সাহায্যে দেখাও যে ক্ষমতা স্থানান্তর দক্ষতা কখনোই ৫০ শতাংশের বেশি হতে পারে না।
 - (গ) একটি ট্রানজিস্টারের ভূমি প্রবাহমাত্রা এবং সংগ্রাহক প্রবাহমাত্রা যথাক্রমে 80 μA এবং 2.56 mA হলে, 'α' ও 'β'-র মান নির্ণয় করো।
- ৩। (ক) একটি p-n সংযোগ-এর মধ্যে অবক্ষয় অঞ্চল কীভাবে তৈরি হয়?
 - (খ) জেনার ব্রেকডাউন ও অ্যাভালাঞ্চ ব্রেকডাউন-এর মধ্যে তুলনা করো।

Please Turn Over


(গ) নিম্নপ্রদত্ত বর্তনীর ক্ষেত্রে V_i -এর মান নির্ণয় করো যার জন্য জেনার ডায়োডটি সবসময় 'ON' অবস্থায় থাকবে। (প্রদত্ত : $V_Z=6.2~V,~I_{ZM}=50~mA$)

্ঘ) উপযুক্ত বর্তনীর সাহায্যে একটি Light Emitting Diode (LED)-এর কার্যপ্রণালী ব্যাখ্যা করো।

2+2+0+0

8। (क) নর্টন সূত্রের সাহায্যে নিম্নে অঙ্কিত নেটওয়ার্কের ৪০ রোধযুক্ত XY শাখায় তড়িৎপ্রবাহ নির্ণয় করো।

- (খ) চিত্রসহ আদর্শ তড়িৎপ্রবাহ উৎস ও আদর্শ বিভব উৎস কাকে বলে ব্যাখ্যা করো।
- (গ) বিশুদ্ধ এবং মিশ্রিত অর্ধপরিবাহী বলতে কী বোঝো?

8+8+2

- ৫। (ক) ক্লাস-A এবং ক্লাস-C পরিবর্ধকের মধ্যে মূল পার্থক্যগুলি লেখো।
 - (খ) একটি CE মোড ট্রানজিস্টারের কারেন্ট গেইন হল 135। যদি এর সংগ্রাহক প্রবাহমাত্রা 49.3 mA হয়, তাহলে নির্গত প্রবাহমাত্রা নির্ণয় করো।
 - (গ) অবক্ষয় প্রকার এবং বর্ধিতকরণ প্রকার MOSFET-এর মধ্যে পার্থক্য কী?
 - (ঘ) একটি JFET-এর V_{GS} -এর মান -3.1~V থেকে পরিবর্তিত হয়ে -3~V হলে এর ড্রেন প্রবাহমাত্রা 1~mA থেকে পরিবর্তিত হয়ে 1.3~mA হয় যখন V_{DS} -এর মান ধ্রুবক। এর ট্রান্সকভাক্টেন্স-এর (g_m) মান নির্ণয় করো। 2+0+2+0
- ও। (ক) একটি অপারেশনাল বিবর্ধক কীভাবে 'ডিফারেনসিয়াল অ্যামপ্লিফায়ার' হিসাবে কাজ করে সেটি বর্তনী চিত্রের সাহায্যে ব্যাখ্যা করো।
 - (খ) একটি আদর্শ OPAMP-র বৈশিষ্ট্যগুলি লেখো।
 - (গ) ঋণাত্মক ফিডব্যাক বলতে কী বোঝো?

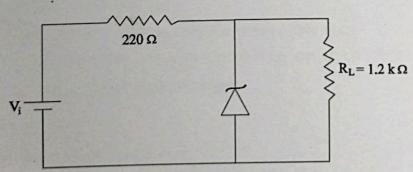
4+0+2

- ৭। (क) অনবরত স্পন্দন-এর বার্কহাউসেন শর্ত কী?
 - (খ) স্পন্দক থেকে আউটপুট পেতে, কোনো ইনপুট সংকেতের প্রয়োজন আছে কি না, আলোচনা করো।
 - (গ) ভিন-ব্রিজ স্পন্দকের বর্তনী চিত্র আঁকো এবং এর কম্পাঙ্ক নির্ণয় করো।

2+2+(2+8)

[English Version]

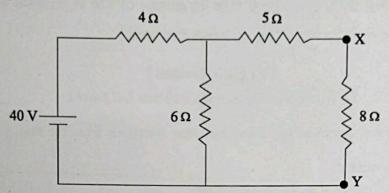
The figures in the margin indicate full marks.


Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:

 2×5

- (a) State Thevenin's theorem on electrical circuits.
- (b) Write the differences between P-type and N-type semiconductor.
- (c) Write down the working principle of a Solar cell.
- (d) What is meant by rectification?
- (e) Draw the output characteristics of a CE-mode transistor.
- (f) Define Q-point of a transistor amplifier.
- (g) Draw the circuit diagram of an inverting OPAMP.
- 2. (a) Draw the circuit diagram of a Bridge rectifier and explain its working principle.
 - (b) What is Maximum Power Transfer theorem? Using this theorem, show that Power Transfer Efficiency cannot exceed 50%.
 - (c) The base current and collector current of a transistor are 80 μ A and 2.56 mA respectively. Find the values of ' α ' and ' β '.
- 3. (a) How is depletion region formed in a p-n junction?
 - (b) Compare between Zener Breakdown and Avalanche Breakdown.
 - (c) For the circuit given below, determine the value of V_i that will maintain the Zener diode in the 'ON'


(Given,
$$V_Z = 6.2 \text{ V}$$
, $I_{ZM} = 50 \text{ mA}$)

(d) Describe the working principle of a Light Emitting Diode (LED) using a proper circuit diagram.

2+2+3+3

4. (a) Use Norton's theorem to calculate the current through the 8 Ω resistance connected across XY in the following circuit.

- (b) Explain with diagram what do you mean by ideal current source and ideal voltage source.
- (c) What do you mean by intrinsic and extrinsic semiconductors?

4+4+2

- 5. (a) What are the fundamental differences between Class-A and Class-C amplifiers?
 - (b) The current gain of a transistor in CE mode is 135. Calculate the emitter current if the collector current is 49.3 mA.
 - (c) What are the differences between depletion type and enhancement type MOSFET?
 - (d) When V_{GS} of a JFET changes from -3.1 V to -3 V, the drain current changes from 1 mA to 1.3 mA for a constant V_{DS} . Find the value of its transconductance (g_m) . 2+3+2+3
- 6. (a) Explain the principle of operation of an OPAMP as a differential amplifier with a neat circuit diagram.
 - (b) Write down the basic characteristics of an ideal OPAMP.
 - (c) What do you mean by negative feedback?

5+3+2

- 7. (a) State the Barkhausen's criterion for sustained oscillation.
 - (b) Discuss whether any input signal is required to obtain an output from the oscillator.
 - (c) Draw the circuit diagram of Wien Bridge oscillator and determine the frequency of the oscillator.

2+2+(2+4)

Paper: DSE-A-2 (Modern Physics)

Full Marks: 65

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।

১ ও ২*নং প্রশ্ন,* ও অন্য যে-কোনো চারটি প্রশ্নের উত্তর দাও।

১। *যে-কোনো পাঁচটি* প্রশ্নের উত্তর দাও ঃ

2xc

- ক) দেখাও প্লাঙ্কের ধ্রুবকের মাত্রা কৌণিক ভরবেগের মাত্রার সাথে সমান।
- (খ) একটি 1 keV ইলেকট্রনের ডি-ব্রয় তরঙ্গদৈর্ঘ্য নির্ণয় করো। [দেওয়া আছে $h=6.62\times 10^{-34}$ J.sec, ইলেকট্রনের ভর = 9.1×10^{-31} kg.]
- (গ) ডেভিসন জার্মার পরীক্ষা কী প্রমাণ করে?
- (ঘ) কোন্ গতিবেগে ইলেকট্রন প্রবাহ হলে এর ভর স্থিরভরের দ্বিগুণ হবে? (দেওয়া আছে শূন্য মাধ্যমে আলোর গতিবেগ $C=3\times 10^8$ m/sec.)
- (६) দেখাও যে অ-আপেক্ষিক মুক্ত কণার গ্রুপ বেগ কণার গতিবেগের সাথে সমান।
- (চ) লেসার আলোর বৈশিষ্ট্য লেখো।
- (ছ) উদ্দীপিত বিকিরণ নির্গমন বলতে কী বোঝো?

২। *যে-কোনো তিনটি* প্রশ্নের উত্তর দাও ঃ

(xv

- (ক) হাইজেনবার্গের অনিশ্চয়তা প্রিন্সিপাল ব্যবহার করে L দৈর্ঘ্যের একটি অনমনীয় একমাত্রিক বাক্সের মধ্যে সীমাবদ্ধ m ভরের একটি কণার গ্রাউন্ড স্টেটের শক্তি গণনা করো।
- (খ) কোন ধ্রুবক A-এর জন্য $e^{-\alpha x^2}$, $\left(\frac{d^2}{dx^2}-Ax^2\right)$ অপারেটরের আইগেন ফাংশান হবে ?
- (গ) একটি রুবি লেজারের কার্যনীতি ব্যাখ্যা করো।
- (ঘ) একটি ইলেকট্রনের গতিশক্তি $1.5~{
 m MeV}$, এর ভর m এবং বেগ v নির্ণয় করো। [দেওয়া আছে ইলেকট্রনের স্থিত ভর $m_0=9.1\times 10^{-31}~{
 m kg}$, এবং আলোর গতিবেগ $C=3\times 10^8~{
 m m/sec}$]
- (%) x-অক্ষ বরাবর গতিবেগ সংযোজন রাশিটি নির্ণয় করো।

(6

৩। (Φ) একটি কণা মূলবিন্দুতে স্থির আছে। t=0 তে একটি বল F প্রযুক্ত হচ্ছে। দেখাও যে,

t সময় পরে কণার বেগ $\dfrac{F~t~c}{\sqrt{m_0^2~c^2+F^2~t^2}}$

- (খ) দৈর্ঘ্য সংকোচনের সূত্রটি প্রতিষ্ঠা করো।
- (গ) $E^2=p^2\,c^2+m_0^2\,c^4$ সম্পর্কটি প্রতিষ্ঠা করো। দেওয়া আছে কণাটির স্থিত ভর m_0 , ভরবেগ p এবং শক্তি E । ৩+৩+৪
- 8। (क) কোনো রাশির প্রত্যাশা মান বলতে কী বোঝো?
 - (খ) হার্মিশিয়ান সংকারকের সংজ্ঞা দাও। দেখাও যে \hat{p}_x একটি হার্মিশিয়ান সংকারক।
 - (গ) এহরেনফাস্ট উপপাদ্যটি প্রমাণ করো।

\$+8+8

- ৫। (क) লেজারের কার্যনীতিতে 'পপুলেশন ইনভারসন' প্রয়োজনীয় কেনো?
 - (খ) একটি '2 ধাপ লেজার' তৈরি করা কি সম্ভব? ব্যাখ্যা করো।
 - (গ) একটি হিলিয়াম-নিয়ন লেসারের কার্যপ্রণালী আলোচনা করো।

0+(>+2)+8

- ঙ। (ক) $\hat{B}\psi = \psi^2$ এই অপারেটরটি রৈখিক কি না পরীক্ষা করো।
 - (খ) স্থিত অবস্থায় (Ground State) একটি কণার ভর m। এটি একটি একমাত্রিক বাক্সের মধ্যে রয়েছে যেটা x=0 এবং x=L-এর মধ্যে আবদ্ধ। $x=\frac{L}{4}$ এবং $x=\frac{L}{2}$ -তে এর সম্ভাব্য ঘনত্বের অনুপাত নির্ণয় করো।
 - (গ) একটি নিউট্রনের দ্যা ব্রগলি তরঙ্গদৈর্ঘ্য λ, 27°C তাপমাত্রায়। 927°C তাপমাত্রায় এর তরঙ্গদৈর্ঘ্য কত হবে? ৩+8+৩
- ৭। (ক) বস্তু তরঙ্গের দশা বেগ ও গুচ্ছ বেগ বলতে কী বোঝো? আপেক্ষিকতার ক্ষেত্রে দশা বেগ কি আলোর গতিবেগের চেয়ে বেশি হতে পারে? মন্তব্য করো।
 - (খ) একটি কণা একটি একমাত্রিক দৃঢ় বাক্সের মধ্যে আবদ্ধ। এর স্রোয়ডিংগার সমীকরণটি সমাধান করে নরমালাইজড্ তরঙ্গ অপেক্ষকটি নির্ণয় করো। (২+৩)+৫
- ৮। (ক) কোয়ান্টাম বলবিদ্যার একমাত্রিক কনটিনুইটি সমীকরণটি প্রতিষ্ঠা করো।
 - (খ) কোয়ান্টাম বলবিদ্যার বাউন্ডারি শর্তগুলি লেখো।
 - (গ) $\left(\hat{x} + \frac{\hat{d}}{dx}\right)$ সংকারকের আইগেন মান α । আইগেন অপেক্ষকের মান নির্ণয় করো।

8+2+8

[English Version]

The figures in the margin indicate full marks.

Answer question nos. 1 and 2, and any four questions from the rest.

1. Answer any five questions:

2×5

- (a) Show that Planck's Constant has dimension of angular momentum.
- (b) Calculate the de Broglie wavelength of 1 keV electron. [Given $h = (Planck's Constant) = 6.62 \times 10^{-34} \text{ J.sec}$, Mass of electron = $9.1 \times 10^{-31} \text{ kg.}$]
- (c) What does Davision-Germar experiment prove?
- (d) At what speed should an electron move to double its rest mass? Given that velocity of light in free space $C = 3 \times 10^8$ m/sec.
- (e) Show that for a non-relativistic free particle group velocity is equal to the velocity of the particle.
- (f) State the characteristics of LASER light.
- (g) What do you mean by stimulated emission of radiation?

2. Answer any three questions:

5×3

- (a) Using Heisenberg's uncertainty principle, calculate the ground state energy of a particle (mass m) confined within a rigid one-dimensional box of length L.
- (b) Find the constant A which makes $e^{-\alpha x^2}$ is an Eigenfunction of the operator $\left(\frac{d^2}{dx^2} Ax^2\right)$.
- (c) Discuss the working principle of Ruby Laser.
- (d) Compute the mass m and speed v of an electron having kinetic energy = 1.5 MeV. [Given rest mass of electron $m_0 = 9.1 \times 10^{-31}$ kg, Velocity of light $C = 3 \times 10^8$ m/sec]
- (e) Deduce the velocity addition law along x-direction.
- 3. (a) A particle is at rest at the origin. A force F starts acting on it as t = 0. Show that the speed of the particle at t is $\frac{F t c}{\sqrt{m_0^2 c^2 + F^2 t^2}}$.
 - (b) Deduce the formula of length contraction.
 - (c) Establish the relation $E^2 = p^2 c^2 + m_0^2 c^4$ for a particle of rest mass m_0 , momentum p and total energy E.

- 4. (a) What do you mean by expectation value of a quantity?
 - (b) Define a Hermitian operator. Show that \hat{p}_x is a Hermitian operator.
 - (c) Prove Ehrenfest theorem.

2+4+4

- 5. (a) Why is population inversion a necessary to obtain Lasing action?
 - (b) Can you build a 2-level LASER? Justify.
 - (c) Discuss the working principle of He-Ne Laser.

3+(1+2)+4

- 6. (a) Examine the operator $\hat{B}_{\Psi} = \Psi^2$ is linear or not.
 - (b) For a particle of mass m in the ground state in a one-dimensional box which extends from x = 0 to x = L, what is the ratio of probability densities at $x = \frac{L}{4}$ and $x = \frac{L}{2}$?
 - (c) The de-Broglie wavelength of a neutron at 27°C is λ . What will be its wavelength at 927°C? 3+4+3
- 7. (a) What do you mean by phase velocity and group velocity of matter wave? Can the phase velocity in the relativistic case exceed the velocity of light? Comment.
 - (b) A particle is confined in a one-dimensional box. Solve its Schrödinger equation to find the normalised wave function. (2+3)+5
- 8. (a) Establish the continuity equation of quantum mechanics in one dimension.
 - (b) Write down the boundary conditions of quantum mechanics.
 - (c) $\left(\hat{x} + \frac{\hat{d}}{dx}\right)$ operation has an eigenvalue α . Determine the corresponding eigenfunction. 4+2+4